Opportunities for the Mathematical Sciences

Bypass Navigation

Table of Contents
Summary Article
  Models and Simulations
  Computing with Large Data Sets
  Geometrization of Topology and Physics
  Noise and Randomness
  Beyond Fermat
  Mathematics for Biology and Medicine
  Information Technology
Individual Contributions
List of Contributors with Affiliations

Summary Article

Mathematics -- The Science of Patterns and Algorithms

Noise and Randomness

Noise and randomness are ubiquitous. The correspondence between random walks and diffusion differential equations has provided fertile territory for mathematical analysis, and for applications such as stochastic control, filtering, and predicting the likelihood of rare but catastrophic events. We have become adept at dealing with random perturbations of finite-dimensional systems, described by ordinary differential equations. In contrast, the analysis of similar issues for infinite-dimensional systems (those described by partial differential equations) is in its infancy. Learning how to deal with them is essential to our understanding of the consequences of uncertainty, imperfection, and thermal fluctuations in physical systems [KO], [GL]. By analogy with the existing theory, it will involve random walks and diffusion differential equations on infinite-dimensional spaces.

Related issues of infinite-dimensional analysis arise in the task of putting realistic quantum field theories on a mathematically sound foundation. Fresh insight in this area is emerging from links between string theoretic physics, topology, and geometry.

A different mandate for infinite-dimensional analysis comes from today's massive data sets, which must typically be interpreted using models with large numbers of parameters. Infinite-dimensional approximations provide one approach to get a handle on the behavior of statistical methods in the limit of increasingly large data sets and models [BI], [BO].

Most of these infinite-dimensional problems defeat us at present; gaining better insight would have extraordinary pay-off. What we can glimpse already has spectacular ramifications.


Last Modified:
Mar 24, 2017

Previous page | Top of this page | Next page


Policies and Important Links


Privacy | FOIA | Help | Contact NSF | Contact Web Master | SiteMap  

National Science Foundation

The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749

Last Updated:
Text Only