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RECURRENCES IN NATURE

Comprehension of the physical world depends upon

observation, measurement, analysis, and, if possible, prediction of

patterns expressed ubiquitously in nature.  Linear or near-linear

systems possess a regularity and simplicity that are readily amenable

to scientific investigations.  Yet numerous other systems, especially

those in the animate realm, possess complexities that are at best non-

linear and non-predictable.  Common ground between living and non-

living systems resides in their shared property of recurrence.  That is,

within the dynamical signals expressed by living and non-living signals

are stretches, short or long, of repeating patterns.  Actually, recurrence

properties are taken advantage of in signal compression techniques

(Wyner, Ziv, & Wyner, 1998)—one billion sine waves at a constant

frequency will perfectly collapse to a fraction of one sine cycle with loss

of no information.  As signals grow in complexity, however,

recurrences become rarer, and efficient compressibility is resisted.

For so-called random systems such as radioactive decay, recurrences

occur theoretically by chance alone.  But the lesson is clear: Insofar as

natural patterns are found in all dynamical systems, the degree to

which those systems exhibit recurrent patterns speaks volumes

regarding their underlying dynamics.  And, on reflection, it should be

appreciated that the entire scientific enterprise is based upon the

concept of recurrence: To be accepted as valid, experimental results

must be repeatable in the hands of the primary investigator and

verifiable by independent laboratories.

Patterns of recurrence in nature necessarily have mathematical

underpinnings (Eckmann, Kamphorst, & Ruelle, 1987) which will
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readily become apparent in the sections that follow.  Although

recurrence quantification analysis (RQA) is scantly a decade old (Zbilut

& Webber, 1992; Webber & Zbilut, 1994), the concept of recurrence in

mathematics has a much longer history (Feller, 1950; Kac, 1959).

However, any appreciation of nonlinear dynamics and associated terms

the reader brings to the table (fractals, attractors, non-stationarity,

singularities, etc.) will greatly facilitate the comprehension of

recurrence analysis (see Glass & Mackey, 1988; Bassingthwaighte,

Liebovitch, & West, 1994; Kaplan & Glass, 1995).  Indeed, our primary

goal in this chapter is to provide clear details regarding the proper

implementation of one nonlinear technique, RQA, in the assessment or

diagnosis of complex dynamical systems.  Using carefully selected

examples pertinent to the field of psychology and parallel disciplines,

we will build a case for the fundamentals of RQA, its derivation, and its

utility.  Patience is required of the learner, for there are no short cuts to

RQA strategies; proper implementations are application-specific.  A

mathematical framework is constructed to give quantitative legitimacy

to RQA, but for those unfamiliar with mathematical notation, an

Appendix is provided with discrete numerical examples (Webber,

2004).

The up and down motions of sea waves originally inspired

Joseph Fourier to characterize signals in terms of their frequency-

domain features (e.g., cycles per sec); that technique now bears his

name (Grafakos, 2003).  Likewise, for our recurrence purposes,

consider a system of literal waves on the sea as measured from buoy

instrumentation and plotted in Figure 2.1A.  During the 9.4 days of 226

hourly  measurements  the  wave  heights  rise  and  fall  in  a  nonlinear,
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Figure 2.1.  (A) Wave height measurements recorded hourly for 226 hours from buoy
instrumentation located 33 nautical miles south of Islip, LI, NY (National Data Buoy Center
Station 44025).  Wave heights are expressed in feet to the nearest 0.1 ft from hour 14, July 10
through hour 23, July 19, 2002.  Dots are placed on all waves having identical heights of exactly
0.9 ft that occur at 25 aperiodic points in time (hours: 4, 7-9, 29, 61, 71, 117, 120, 124-126, 143,
145, 147-148, 179-180, 187, 210, 220-221, 223-225).  These wave data are owned by the NSW
Department of Land and Water Conservation (DLWC) as collected and provided by the Manly
Hydraulic Laboratory (MHL), Sydney, Australia.  Time series data from data file BOUY (n=226
points).  (B) Matrix plot of identical wave heights at 0.9 ft.  The same time series of 25 aperiodic
time points is aligned along both horizontal and vertical time axes, and intersecting pixels are
darkened to map out recurrence matches at 0.9 ft wave heights only.  All other wave heights
are excluded from the matrix.  Recurrence data computed from data file BUOY9 using program
RQD.EXE.  RQA parameters: P1-Plast = 1-226; RANDSEQ = n; NORM = max norm; DELAY = 1;
EMBED = 1; RESCALE = absolute; RADUS = 0; COLORBND = 1; LINE = 2.
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aperiodic fashion over different time scales (long-periods, large

amplitudes; short-periods, small amplitudes).  To capture the

fundamental notion of recurrence, a dot is placed on every wave of the

time series that is exactly 0.9 ft in height.  As illustrated, this forms an

imaginary line of horizontal dots cutting through the waves at 25

specific time points.  That is, each of these waves is exactly recurrent

(same height) with one another at certain instances in time that are non-

periodic.  To graphically represent the recurrent structuring of the data

matrix at 0.9 ft height only, the time-positions of these waves are

plotted against each other in Figure 2.1B.  All other wave heights are

excluded.

To get a more accurate picture, however, it is necessary to

include waves of all possible heights.  Because the waves range in

height from 0.5 to 1.4 ft with a measurement resolution of 0.1 ft, there

are necessarily 10 different possible wave heights.  The recurrence plot

of Figure 2.2A shows the distribution of recurrent points (darkened

pixels) for all waves of exactly the same height, including low-,

medium-, and high-amplitude waves.  For the sea wave data it can be

seen that the recurrence plot forms a delicate, lace-like pattern of

recurrent points.  By necessity, there is a long diagonal line (wave

heights always self-match), the plot is symmetrical across that diagonal

(if height of wave i matches height of wave j, then the height of wave j

matches height of wave i), and the recurrence plot is 2-dimensional.

What happens if we relax the constraint that wave heights must

be exactly the same before registering them as recurrent?  For

example, if we let sea waves within 0.2 ft of each other be considered

recurrent, a 1.0 ft wave would recur with other waves ranging in  height
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Figure 2.2.  Recurrence plots of wave height data for different radius (RADIUS) settings and
computed recurrence densities (%REC).  (A) Exact recurrences (RADIUS = 0.0 ft; %REC =
13.479%). (B) Approximate recurrences (RADIUS = 0.2 ft; %REC = 54.938%).  (C) Saturated
recurrences (RADIUS = 0.9 ft, %REC = 100.000%).  Like color-contour maps, the recurrence
plot in C is color-coded in 0.2 ft increments of RADIUS: blue (0.0-0.2 ft); cyan (0.2-0.4 ft); green
(0.4-0.6 ft); yellow (0.6-0.8 ft); red (0.8-0.9 ft).  Time series of wave height data (WH, feet versus
hours) align along the horizontal and vertical axes of each recurrence plot (time calibration of
hour 1 through hour 226).  Recurrence data computed from file BUOY using program RQD.EXE.
RQA parameters: P1-Plast = 1-226; RANDSEQ = n; NORM = max norm; DELAY = 1; EMBED = 1;
RESCALE = absolute; RADIUS = 0.0 (A), 0.2 (B) or 1.0 (C); COLORBND = 1 (A and B) or 0.2 (C);
LINE = 2.
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from 0.8 to 1.2 ft.  Therefore, applying this rule to all points in the time

series should result in the recruitment of more recurrent points.  Indeed

this is the case, as demonstrated in the recurrence plot of Figure 2.2B.

The density of recurrences is decidedly higher, and the lace-like

quality of the former plot is replaced by broader areas of approximate

recurrences.  Carrying this relaxation rule to its limit, what would the

recurrence plot look like if all waves were recurrent with one another?

This is easily done for the present example by defining two time-points

recurrent if they are within 0.9 ft in height.  The 0.9 ft limit comes from

the difference between the largest wave (1.4 ft) and the smallest wave

(0.4 ft).  In this case, we would correctly expect every pixel in the

recurrence plot to be selected, creating one huge dark square with loss

of all subtle details (not shown).  Discriminating details of distances can

be retrieved, however, by color-coding the differences in wave heights

according to a simple coloring scheme as illustrated in Figure 2.2C.  All

we need to do is change the assigned color in 0.2 ft increments,

constructing a color-contour map of wave heights.  Actually, this type of

coloring is not unlike any contour mapping using different colors to

designate various elevations above or below sea level.  It is very

instructive to make mental correlations between the wave height data

(time series along horizontal and vertical axes) and the attendant

recurrence plots.

RECURRENCE PLOTS

With this simple introduction to recurrence plots, it is now

necessary to become more mathematical.  Published numerical

examples (Webber, 2004) are reiterated in the Appendix to assist in the
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learning of these important details.  As will be carefully shown, the

recurrence plot is nothing more (or less) than the visualization of a

square recurrence matrix (RM) of distance elements within a cutoff

limit.  We will work up to the definition of seven recurrence parameters

(user-adjustable constants) which control the distances within the

matrix, their rescaling, and recurrence plot texture.  To do this, we will

introduce the straightforward ECG signal recorded from a human

volunteer as plotted in Figure 2.3A.  We could easily generate a

recurrence plot of this signal like was done for the sea wave data,

identifying as recurrent those time points with identical or similar

voltages.  But to do so would only be the first-dimensional approach to

the problem (represented in a 2-dimensional recurrence plot); as we

describe in the following paragraphs, such a 1-dimensional approach

may not suffice.

Consider the ECG signal in its one-dimensaional representation

of voltage as a function of time (Figure 2.3A).  Does not this signal

actually “live” in higher dimensions?  Of course it does.  Since the ECG

derives from summed cardiac potentials that move simultaneously in

three dimensions (frontal, saggital, and horizontal orthogonal planes),

the 1- and 2-dimensional representations are mere projections of the

signal to lower dimensions.  To accurately represent the ECG in three

dimensions it would be necessary to simultaneously record electrical

potentials in three orthogonal planes from the subject.  But here is

where things get very interesting.  About a quarter century ago Takens

(1981), elaborating upon key conceptual ideas of Ruelle, introduced his

theorem of higher-dimensional reconstruction by the method of time

delays.  What this theorem states  is that the topological features  of  any
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Figure 2.3.  (A) Time series of a one-dimensional, lead II electrocardiogram recorded from a
normal human volunteer and digitized at a rate of 200 Hz.  Displayed are the first three cardiac
cycles with characteristic P waves (atrial depolarization), QRS complexes (ventricular
depolarization) and T waves (ventricular repolarization).  (B) Three-dimensional reconstruction
of the ECG signal in phase space by the method of time delays (τ = 10 ms).  Each ECG wave (P,
QRS, T) forms its own unique loop (three times), returning to isopotential (0,0,0 amplitude units)
between waves (T-P interval). Time series data from file ECG (A) with 5 ms per point.  Phase-
space data from file ECG with DELAY = 2 points (10 ms) or 4 points (20 ms).

higher-dimensional system consisting of multiple coupled variables

can be reconstructed from but a single measured variable of that

system.  That is, the actual dimension of the system (D) is set by a
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number of participant variables, but we may only need to measure one

of those variables to learn interesting features of the system’s

underlying dynamics.  The reconstruction is performed by defining

time-delayed vectors (Vi) of M points (Pi) that are delayed or offset in

time (τ).  Thus, each point represents a single amplitude (scalar) at a

specific instance in time.

D-dimensional vector, Vi = Pi + Pi+τ + Pi+2 τ + … + Pi+(D-1) τ    [2.1]

Think of what this means graphically for our single-lead ECG

signal.  If the 1-dimensional data (ECG vector) are plotted against itself

twice delayed (τ and 2τ) on a three-axis plot, the signal is promoted

into 3-dimensional space as shown in Figure 2.3B.  As seen, the

morphology of this normal electrocardiogram forms three loops in

phase space corresponding to the P, QRS and T waves of the ECG time

series.  Topologically, these loops are identical to the simultaneous

plotting of three orthogonal leads, had they been recorded.  That is, the

one measured variable (ECG lead II) becomes a surrogate for the two

unmeasured variables (ECG leads I & III).

Careful examination of Equation 2.1 explicitly introduces two of

the seven recurrence parameters mentioned previously.  First we need

to know into what dimension the dynamic should be projected, the

embedding dimension (M), where M >= D.  And second, for M > 1, we

need to pick an appropriate delay (τ) between sequential time points in

the 1-dimensional signal.  It must be appreciated that the selections of

embedding dimension and delay are not trivial, but are based on
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nonlinear dynamical theory.  Moreover, the presence of noise

complicates the situation, as will be discussed later.

Embedding dimension (M or EMBED), the first recurrence

parameter, can in principle be estimated by the nearest-neighbor

methodology of Kennel, Brown, and Abarbanel (1992).  Parameter M is

increased in integer steps until the recruitment of nearest neighbors of

the dynamic under scrutiny becomes unchanging.  At this particular

value of M, the information of the system has been maximized (and,

technically speaking, the attractor has been completely unfolded).

Thus, there is no need to explore higher dimensions since no new

information would be recruited anyway.  This methodology works well

on stable and low-noise systems, which are most notably found in

mathematical examples such as the Lorenz attractor (Lorenz, 1963).  But

when it comes to real-world data, noise inflates the dimension (D)

(Parker & Chua, 1989), and non-stationarities (transients, drifts) in the

system modulate the critical M.  Thus, in practice, M > D.  Because of

these practical limitations, we typically use embedding dimensions of

10 to 20 on biological systems, but no higher.  It is a curious fact that

when the embedding dimension is set to too high, even

random/stochastic systems (which in theory exhibit recurrence only by

chance) display strong, yet artifactual, patterns of recurrence.

Delay (τ or DELAY), the second recurrence parameter, should be

selected so as to minimize the interaction between points of the

measured time series.  This, in effect, opens up the attractor (assuming

one exists), by presenting its largest profile.  An analogy would be the

construction of a circle by plotting a sine wave against itself delayed by

90 degrees (whereas delaying by a mere 1 degree would yield a very
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thin, slightly bowed line profile).  Two common ways of selecting a

proper delay include finding the first minimum in either the (linear)

autocorrelation function or (nonlinear) mutual information function

(Frazer & Swinney, 1986) of the continuous time series.  For

discontinuous signals (maps as opposed to flows), such as R-R intervals

extracted from the continuous ECG signals, the delay is best set to 1 (no

points in the time series are skipped).  In special cases, parameter τ

can also be set to 1 for continuous flows if the goal to is to perform

waveform matching (recurrence matching of similar waveforms, point-

for-sequential-point).  As a corollary to this discussion, Grassberger,

Schreiber, and Schaffrath (1991) demonstrated that the delay is a non-

critical critical parameter, provided the attractor is sufficiently opened

up.  When any parameter is non-critical it simply means that the

quantitative features of the system are robust and stable against

changes in the named parameter.  This comes as good news for

physiological systems in which we need not over concern ourselves

with finding the optimal delay (which anyway is non-existent for

transient states), since many delays will suffice for the same system.

The third recurrence parameter is the range, defined by the

selected starting point (Pstart) and ending point (Pend) in the time series

to be analyzed.  For an embedded time series (M > 1) of N points, it

becomes obvious that M – 1 embedded points must extend beyond

Pend.  Thus Pend can extend no further than N – M + 1 points into the

available data.  In effect, the range defines a window (W = Pend – Pstart +

1) on the dynamic under investigation.  As will be stressed, short

windows focus on small-scale recurrences, whereas long windows

focus on large-scale recurrences (see Figure 2.8).
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The fourth recurrence parameter is the norm, of which there are

three selections possible: Minimum norm, maximum norm, and

Euclidean norm.  As implied by its name, the norm function

geometrically defines the size (and shape) of the neighborhood

surrounding each reference point.  The recurrence area is largest for

the max norm, smallest for the min norm, and intermediate for the

Euclidean norm (see Marwan, 2003a).  (Since a vector must have at

least two points, each norm is unique if and only if M > 1, else all norms

are exactly equivalent for M = 1.)  But before we can get explicit about

norms, it is necessary to be absolutely clear as to how vectors are

defined from the 1-dimensional time series.  Think of it this way.  Take a

vector time series (T) of N scalar points (P) and double label the time

series as follows:

Ti = Tj = P1, P2, P3, P4, …, PN.    [2.2]

The dual subscripts (i ≠ j ) refer to different points (Pi and Pj) in Ti

and Tj when M = 1, but to different vectors (Vi and Vj) in Ti and Tj when

M > 1.  Each vector is constructed by starting with an initial point and

taking M – 1 subsequent points offset by τ (see Equations 2.3 and 2.4

and compare with Equation 2.1).  The distances between all possible

combinations of i-vectors (Vi) and j-vectors (Vj) are computed

according to the norming function selected.  The minimum or maximum

norm at point Pi,Pj is defined, respectively, by the smallest or largest

difference between paired points in vector-i and vector-j (Vi – Vj).  The

Euclidean norm is defined by the Euclidean distance between paired

vectors (Equation 2.5).
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Vi = Pi + Pi+τ + Pi+2τ + … + Pi+(M-1) τ    [2.3]

Vj = Pj + Pj+τ + Pj+2τ + … + Pj+(M-1) τ    [2.4]

Euclidean distance = √(Σ(Vi – Vj)2)    [2.5]

Computed distance values are distributed within a distance

matrix DM[j, i] which aligns vertically with Tj and horizontally with Ti (i

= 1 to W; j = 1 to W; where maximum W = N – M + 1).  The distance

matrix has W2 elements with a long central diagonal of W distances all

equal to 0.0.  This ubiquitous diagonal feature arises because individual

vectors are always identical matches with themselves (Vi = Vj whenever

i = j).  The matrix is also symmetrical across the diagonal (if vector Vi is

close to vector Vj then by necessity vector Vj is close to vector Vi ).

The fifth recurrence parameter is the rescaling option.  The

distance matrix can be rescaled by dividing down each element in the

distance matrix (DM) by either the mean distance or maximum distance

of the entire matrix.  In general, DM rescaling allows systems operating

on different scales to be statistically compared.  Mean distance

rescaling is useful in smoothing out any matrix possessing an outlier

maximum distance.  But maximum distance rescaling is the most

commonly used (and recommended) rescaling option, which redefines

the DM over the unit interval (0.0 to 1.0 or 0.0% to 100.0%).  It is also

possible to leave the DM unaltered by not rescaling.  In such special

cases, DM distances are expressed in absolute units identical to the

amplitude units of the input time series (volts, mm Hg, angstroms,

seconds, etc.).
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The sixth recurrence parameter is the radius (RADIUS), which is

always expressed in units relative to the elements in the distance

matrix, whether or not those elements have been rescaled.  In the sea

wave example, the radius was actually set to three different values:

RADIUS = 0.0, 0.2, and 0.9 ft (Figures 2.2A, B, and C, respectively).  In

that case we can speak in absolute distances because the distance

matrix was never rescaled.  In effect, the radius parameter implements

a cut-off limit (Heavyside function) that transforms the distance matrix

(DM) into the recurrence matrix (RM).  That is, all (i, j) elements in DM

with distances at or below the RADIUS cutoff are included in the

recurrence matrix (element value = 1), but all other elements are

excluded from RM (element value = 0).  Note carefully that the RM

derives from the DM, but the two matrices are not identical.  As seen for

the wave data (Figure 2.2), as the radius increases, the number of

recurrent points increases.  Only when RADIUS equals or exceeds the

maximum distance is each cell of the matrix filled with values of 1 (the

recurrence matrix is saturated).  The “shotgun plot” of Figure 2.4

provides a conceptual framework for understanding why an increasing

RADIUS captures more and more recurrent points in phase space.

Thus, if one becomes too liberal with RADIUS, points (M = 1) or vectors

(M > 1) that are actually quite distant from one another will nonetheless

be counted as recurrent (the recurrence matrix is too inclusive).

Proper procedures for selecting the optimal RADIUS parameter will be

described below.
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Figure 2.4.  Representation of a hypothetical system in higher-dimensional phase space with a
splay of points (closed dots) surrounding a single reference point (open dot).  The points falling
within the smallest circle (RADIUS = 1 distance units) are the nearest neighbors of the reference
point.   That is, those points are recurrent with the reference point.  The second concentric
circle (RADIUS = 2 distance units) includes a few more neighbors, increasing the number of
recurrences from 4 to 14.  Increasing the radius further (RADIUS = 3 or 4 distance units)
becomes too inclusive, capturing an additional 20 or 60 distant points as nearest neighbors
when, in fact, they are not.

The seventh and last parameter is termed the line parameter

(LINE).  This parameter is important when extracting quantitative

features from recurrence plots (see next section), but exerts no effect

on the recurrence matrix itself.  If the length of a recurrence feature is

shorter than the line parameter, that feature is rejected during the

quantitative analyses.  Typically, the line parameter is set equal to 2

because it takes a minimum of two points to define any line.  But it is

possible to increase the line parameter (in integer steps) and thereby

implement a quantitative filter function on feature extractions, but this is

not necessarily recommended.
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RECURRENCE QUANTIFICATION

Simply put, recurrence plots, especially colored versions

expressing recurrence distances as contour maps, are beautiful to look

at (e.g., Figure 2.2C).  With little debate, global recurrence plots of

time series and signals extant in nature captivate one’s attention.

Admittedly, such curious and intriguing graphical displays tend more

to evoke artistic than scientific appreciation, and rightfully so.

Recalling the brief history of recurrence analysis, recurrence plots

were originally posited as qualitative tools to detect hidden rhythms

graphically (Eckmann et al., 1987).  From the outset, color was not the

key; rather the specific patterns of multi-dimensional recurrences gave

hints regarding the underlying dynamic.  Early on it was understood

how important it was to hold the radius parameter to small values so as

to keep the recurrence matrix sparse.  In so doing, emphasis was

placed on local recurrences that formed delicate, lacy patterns.  All of

this is well and good, but the next logical step was to promote

recurrence analysis to quantitative status (Zbilut & Webber, 1992;

Webber and Zbilut, 1994).  Instead of trusting one’s eye to “see”

recurrence patterns, specific rules had to be devised whereby certain

recurrence features could be automatically extracted from recurrence

plots.  In so doing, problems relating to individual biases of multiple

observers and subjective interpretations of recurrence plots were

categorically precluded.

We will highlight the fundamental rules of recurrence

quantification analysis (RQA) by employing the classic strange attractor

of Hénon (1976).  This chaotic attractor is a geometrical structure

(system) that derives its form (dynamic) from the nonlinear coupling of
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two variables.  Note in Equation 2.6 that the next data point, Xi+1, is a

nonlinear function of the previous Xi and Yi terms (the Xi
2 term provides

the nonlinear interaction), whereas in Equation 2.7 the next Yi+1 is a

linear function of the previous Xi term.

Xi+1 = Yi + 1.0 – (1.4Xi
2)    [2.6]

Yi+1 = 0.3Xi    [2.7]

We seeded the coupled Hénon variables with initial zero values

(e.g., X0 = Y0 = 0.0) and iterated the system 2000 times to create a

sample time series.  To make sure the dynamic settled down on its

attractor, the first 1000 iterations were rejected as transients.  The next

200 iterations of the system are plotted in Figure 2.5 (cycles 1001

through 1200), which shows the complex dynamics of the coupled

variables.  Plotting Yi as a function of Xi generates the Hénon strange

attractor (Figure 2.6A).  It is called an attractor because dynamical

points are “attracted” to certain positions on the map and “repelled”

from other positions (the white space).  Note that the points remain

confined within tight limits (±1.3 for X and ±0.4 for Y) without flying off

to infinity.  The dimension of the Hénon attractor is estimated to be

around 1.26 (Girault, 1991), which is a fractal or non-integer dimension.

Fractal dimensions relate more to the mathematical concept of scaling

than real-world dimensions, which must be integers (see Liebovitch &

Shehadeh, Chapter 5).  Recalling the method of time delays as

discussed for the ECG example (Figure 2.3), plotting Xi (current value)

as a function of Xi+1 (next value) topologically reproduces the Hénon
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attractor (Figure 2.6B).  So does plotting Yi as a function of Yi+1 (Figure

2.6C).  These relationships underscore the remarkable power of

surrogate variables to adequately substitute for unmeasured variables

by using the method of time delays (Takens, 1981).

Figure 2.5.  Fluctuations of the Xi and Yi variables comprising the Hénon system in its chaotic
mode (Equations 2.6 and 2.7).  The first 1000 iterations are rejected before plotting the next 200
iterations (cycles 1001-1200).  The dynamic behaviors of both variables are complex, but
bounded to the Hénon attractor (see Figure 2.6).  The dynamics are also fully deterministic, yet
noisy, depending upon the round-off routines implemented by the digital computer that
generated the data.  Iterated data from files HENCX and HENCY.
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Figure 2.6.  Reconstruction of the Hénon strange attractor in phase space by three separate
methods.  (A) Plotting Yi versus Xi generates the familiar Hénon strange attractor (dots;
Equations 2.6 and 2.7) or 16-point Hénon periodic attractor (crosshairs; Equations 2.18 and
2.19).  (B) Plotting Xi versus Xi+1 reconstructs the topological features of the original Hénon
strange attractor by the method of time delays.  (C) Plotting Yi versus Yi+1 also reconstructs the
attractor.  Plots generated from data files HENCX, HENCY, HENPX, HENPY (with DELAY = 1 for B
and C).
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Let us select the Hénon X variable (Figure 2.5A) and generate a

recurrence plot of this single variable, as shown in Figure 2.7.  The

window size (W) is 200 points (e.g., cycles 1001-1200).  This is an auto-

recurrence plot since the Hénon X variable is being compared with

itself (points Xi = points Xj, 3 points at a time since M = 3).  Qualitative

examination of the symmetrical recurrence plot reveals short line

segments parallel to the central diagonal, a cluster of points

correspondent to a brief period-2 structure in the dynamic (cycles

1025-1036), and a few isolated points representing chance recurrences.

We will focus on the diagonal and vertical structures since from those

stem the seven recurrence (dependent) variables or quantifications.

Because the recurrence plot is symmetrical across the central diagonal,

all quantitative feature extractions take place within the upper triangle,

excluding the long diagonal (which provides no unique information)

and lower triangle (which provides only redundant information).

The first recurrence variable is %recurrence (%REC).  %REC

quantifies the percentage of recurrent points falling within the specified

radius.  This variable can range from 0% (no recurrent points) to 100%

(all points recurrent). For a given window size W, Equation 2.8 holds

true.  For the Hénon attractor (Figure 2.7), %REC = 1.201% confirming

that the recurrence matrix is sparse (as is desired).

%REC = 100 (#recurrent points in triangle) / (W(W – 1) / 2)  [2.8]

The second recurrence variable is %determinism (%DET).

%DET measures the proportion of recurrent points forming diagonal

line  structures.   Diagonal  line  segments  must have a minimum length
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Figure 2.7.  Recurrence plot of the Hénon chaotic X variable.  The same variable is plotted on
the horizontal (chaotic Xi) and vertical axes (chaotic Xj) from iterations of coupled Equations 2.6
and 2.7.  When vectors of 3 points (e.g., M = 3) match, recurrent points are plotted at the
corresponding (i, j) intersections.  The most striking feature of this plot is the short diagonal line
structures parallel to the main diagonal.  Recurrence data computed from file HENCX using
program RQD.EXE.  RQA parameters: P1-Plast = 1001-1200; RANDSEQ = n; NORM = Euclid;
DELAY = 1; EMBED = 3; RESCALE = max dist; RADUS = 3; COLORBND = 1; LINE = 2.  RQA
variables: %REC = 1.201; %DET = 88.703; LMAX = 12; ENT = 2.557; TND = –4.505; %LAM =
2.510; TT = 2.000.

defined by the line parameter, lest they be excluded.  The name

determinism comes from repeating or deterministic patterns in the

dynamic.  Periodic signals (e.g. sine waves) will give very long

diagonal lines, chaotic signals (e.g. Hénon attractor) will give very

short diagonal lines, and stochastic signals (e.g. random numbers) will
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give no diagonal lines at all (unless parameter RADIUS is set too high).

For the Hénon attractor (Figure 2.7), %DET = 88.703% showing that

most of the recurrent points present are found in deterministic

structures.

%DET = 100 (#points in diagonal lines)/(#recurrent points)  [2.9]

The third recurrence variable is linemax (LMAX), which is simply

the length of the longest diagonal line segment in the plot, excluding

the main diagonal line of identity (i = j).  This is a very important

recurrence variable because it inversely scales with the most positive

Lyapunov exponent (Eckmann et al., 1987; Trulla et al., 1996).  Positive

Lyapunov exponents gauge the rate at which trajectories diverge, and

are the hallmark for dynamic chaos.  Thus, the shorter the linemax, the

more chaotic (less stable) the signal.  For the Hénon attractor (Figure

2.7), LMAX = 12 points.

LMAX = length of longest diagonal line in recurrence plot  [2.10]

The fourth recurrence variable is entropy (ENT), which is the

Shannon information entropy (Shannon, 1948) of all diagonal line

lengths distributed over integer bins in a histogram.  ENT is a measure

of signal complexity and is calibrated in units of bits/bin.  Individual

histogram bin probabilities (Pbin) are computed for each non-zero bin

and then summed according to Shannon’s equation.  For the Hénon

attractor (Figure 2.7), ENT = 2.557 bits/bin due to a wide distribution of

diagonal line lengths.  For simple periodic systems in which all

diagonal lines are of equal length, the entropy would be expected to be
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0.0 bins/bin (but see Figure 2.12).  The units of bits per bin come from

taking the base-2 logarithm.  For further discussion of ENT see

Pellechia and Shockley (Chapter 3).

ENT = –∑(Pbin)log2(Pbin)     [2.11]

The fifth recurrence variable is trend (TND), which quantifies the

degree of system stationarity.  If recurrent points are homogeneously

distributed across the recurrence plot, TND values will hover near zero

units.  If recurrent points are heterogeneously distributed across the

recurrence plot, TND values will deviate from zero units.  TND is

computed as the slope of the least squares regression of %local

recurrence as a function of the orthogonal displacement from the

central diagonal.  Multiplying by 1000 increases the gain of the TND

variable.  For the Hénon attractor (Figure 2.7), TND = –4.505 units,

which is within the ± 5 units, confirming system stationarity (Webber et

al., 1995) as achieved by rejecting the first 1000 points.

TND = 1000(slope of %local recurrence vs. displacement)  [2.12]

The sixth and seventh recurrence variables, %laminarity

(%LAM) and trapping time (TT), were introduced by Marwan, Wessel,

Meyerfeldt, Schirdewan, and Kurths (2002).  %LAM is analogous to

%DET except that it measures the percentage of recurrent points

comprising vertical line structures rather than diagonal line structures.

The line parameter still governs the minimum length of vertical lines to

be included.  TT, on the other hand, is simply the average length of
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vertical line structures.  For the Hénon attractor (Figure 2.7), %LAM =

2.510% and TT = 2.000, showing that vertical line structures are not

common for this system.

%LAM = 100(#points in vertical lines)/(#recurrent points)  [2.13]

TT = average length of vertical lines ≥ parameter line           [2.14]

Recurrence plots and recurrence quantifications are strongly

dependent on the sequential organization of the time series or data

string.  By contrast, standard statistical measures such as mean and

standard deviation are sequence independent.  Random shuffling of the

original sequence destroys the small-scale structuring of line segments

(diagonal as well as vertical) and alters the computed recurrence

variables, but does not change the mean and standard deviation.  A

good analogy would be that of Morse code.  Random shuffling of the

dots and dashes would not change the percentage of dots and dashes in

the code, but it would certainly alter/destroy the encoded message!

This important idea will be expanded upon when we discuss linguistic

texts and protein codes.

RECURRENCE EPOCHS

So far we have demonstrated that time series data (linear vectors

of sequential scalar measurements of length N) can be embedded into

higher dimensional space by the method of time delays (Takens, 1981).

Distances between all possible vectors are computed and registered in

a distance matrix, specific distance values being based on the selected
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norm parameter.  A recurrence matrix (RM) is derived from the

distance matrix (DM) by selecting an inclusive radius parameter such

that only a small percentage of points with small distances are counted

as recurrent (yielding a sparse RM).  The recurrence plot (RP), of

course, is just the graphical representations of RM elements at or below

the radius threshold.  Seven features (recurrence variables) are

extracted from the recurrence plot within each window (W) of

observation on the time series.  The question before us now is how can

these recurrence variables be useful in the diagnosis of dynamical

systems?

Whenever any dynamic is sampled, we are taking a “slice of

life,” as it were.  The dynamic was “alive” before we sampled it, and

probably remained “alive” after our sampling.  Consider, for example,

the EMG signal recorded from the biceps muscle of a normal human

volunteer and its attendant recurrence plot in Figure 2.8 (Webber,

Schmidt, & Walsh, 1995).  The focus is on the first 1972 points of the time

series digitized at 1000 Hz (displayed from 37 ms to 1828 ms).  But how

might these digitized data be processed in terms of recurrence

analysis?  It would certainly be feasible to perform recurrence

quantifications within the entire window (Wlarge = 1972 points) as

represented by the single, large, outer RM square.  On the other hand,

the data can be windowed into four smaller segments (Wsmall = 1024

points) as represented by the four smaller and overlapping RM

squares.  In the latter case the window offset of 256 points means the

sliding window jogs over 256 points (256 ms) between windows.  Two

effects are at play here.  First, larger windows focus on global dynamics

(longer time frame) whereas smaller  windows focus  on local dynamics
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Figure 2.8.  Windowed recurrence analysis of resting biceps brachii EMG signal.  The large
outer square displays the large scale recurrence plot (W = 1792 = N points). The four small
inner squares (epochs) block off the small scale recurrence plots (W = 1024 < N) with an offset
of 256 points between windows.  Recurrence data computed from file EMG using program
RQD.EXE.  RQA parameters: P1-Plast = 1-1972 (for large square) or 1-1024, 257-1280, 513-1536,
769-1792 (for small squares); RANDSEQ = n; NORM = Euclid; DELAY = 4; EMBED = 10;
RESCALE = max dist; RADUS = 15; COLORBND = 1; LINE = 2.  RQA variables (for large square):
%REC = 0.335; %DET = 60.905; LMAX = 118; ENT = 1.711; TND = –0.129; %LAM = 55.660; TT =
2.501.  RQA variables (for small squares, respectively): %REC = 0.471, 0.407, 0.331, 0.311;
%DET = 68.560, 65.603, 66.474, 68.140; LMAX = 118, 118, 118, 59; ENT = 1.753, 1.778, 1.751,
1.572; TND = –0.488, –0.663, –0.644, –0.464; %LAM = 59.635, 54.435, 45.759, 44.506; TT = 2.454,
2.500, 2.396, 2.425.

(shorter time frame).  Second, larger window offsets yield lower time-

resolution RQA variables, whereas smaller window offsets yield higher

time-resolution variables.  Remember, seven RQA variables are

computed (extracted) from each RM (or RP).  By implementing a sliding

window design, each of those variables is computed multiple times,
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creating seven new derivative dynamical systems expressed in terms

of %REC, %DET, LMAX, ENT, TND, %LAM, and TT.  Alignment of those

variables (outputs) with the original time series (input) (adjusting for

the embedding dimension, M) might reveal details not obvious in the 1-

dimensional input data.

Here are the important details of this the muscle fatigue

experiment performed by Webber et al. (1995) which illustrate these

fundamental rules of sliding windows (termed epochs).  While seated

comfortably, normal human volunteers were instrumented for the

recording of surface EMG signals from the biceps brachii as shown in

Figure 2.9A.  Subjects were asked to hold their forearm parallel to the

floor and their elbow at 90°.  A 1.4 kg weight was placed in the open

palm and a control EMG recording was digitized at 1000 Hz.  After 60

seconds of recording, the weight load was increased to 5.1 kg, which

led to total muscle fatigue in 1 to 6 minutes (or 2.8 minutes for the

example subject in Figure 2.9), depending upon the biceps muscle

mass of the subject.  The experiment was designed to compare the

performance of nonlinear RQA and linear spectral analysis on identical

EMG signals.  Might the two techniques have differential sensitivities?

The recorded time series (N = 227,957 points) was partitioned in

shorter windows (W = 1024) or epochs, each 1.024 seconds long.

Adjacent windows were offset by 256 points (75% overlap), fixing the

time resolution to 256 ms.  Spectral features and recurrence

quantifications were then computed for each of the 887 sliding

windows.  As shown in Figure 2.9B and 2.9C, respectively, the spectral

center frequency (FC) and recurrence %DET were stable during the 60

second,   low-weight   control  period.   For   statistical   purposes,   95%
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Figure 2.9.  Muscle fatigue experiment in a human volunteer, designed to force the system
through a series of state changes until task failure occurs.  (A) Bipolar surface EMG recording
from the biceps brachii muscle during light-weight loading (1.4 kg) before time zero, and
heavy-weight loading (5.1 kg) starting at time zero.  After 60 sec of control (steady-state
dynamics), the subject was forced onto a trajectory (transient dynamic) ending in task failure
over the next 167 sec.  (B) Spectral center frequency (FC) remains constant during the light-
weight loading, but slowly decreases during the heavy-weight loading.  The first spectral
detection of fatigue occurs at 63.3 sec when the 3rd degree polynomial breaks out of the control
95% confidence limits (dot).  (C) Recurrence variable %DET also remains constant during the
light-weight loading, but increases during the heavy-weight loading.  Fatigue is detected by
%DET after only 45.6 sec (dot) or 28% sooner than FC. EMG digitized at a rate of 1000 Hz.
Recurrence data computed from data file EMG using program RQE.EXE.  RQA parameters: P1-
Plast (first epoch) = 1-1024; SHIFT = 256; #EPOCHS = 887; RANDSEQ = n; NORM = Euclid;
DELAY = 4; EMBED = 10; RESCALE = max dist; RADUS = 15; LINE = 2.
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confidence limits were drawn for each control trace, and a 3rd degree

polynomial was constructed through each data set.  Increasing the load,

however, perturbed the steady-state dynamics and set the biceps’

contractile machinery on a transition trajectory toward muscle fatigue

and ultimate task failure.  Examination of the output data shows that

during the fatiguing process, FC decreased whereas %DET increased.

Both variables can be interpreted as indicators of larger motor unit

recruitment and synchronization, but that is not the point being made

here.  What is significant is the fact that the %DET broke out of its 95%

confidence limit before FC broke out of its 95% confidence limit (e.g. at

45.6 sec versus 63.3 sec after the heavy loading, respectively, or 28%

sooner).  It can be concluded that whereas both spectral and

recurrence strategies are responsive to dynamical changes in

physiological systems such as fatiguing muscle, recurrence

quantification is substantially more sensitive.  In other words, subtle

dynamical departures from “steady state” occurring in time series data

might be delayed or even missed by spectral tools, but detected

sooner and/or more accurately by recurrence tools.

This EMG example illustrates the power of sliding recurrence

windows, but we glanced over the determination of the several

important recurrence parameters.  As mentioned, each window

consisted of 1024 points (range).  But we also selected the Euclidean

norm, maximum distance rescaling, and a line of 2 (all typical choices).

But what about the delay, radius, and embedding dimension

parameters—how were they selected?  First, to estimate an ideal delay

time, the control EMG data (58 windows of non-overlapping, adjacent

windows, 1.024 sec each) were subjected to autocorrelation analysis.
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The average delay, based on the first zero crossing of the

autocorrelation function (a zero value indicates no correlation), was

found to be 4 digitized points or 4 ms.  Second, to estimate the proper

radius threshold, the beginning control EMG data (1 window or epoch

or 1024 points) were subjected to recurrence scaling analysis.  In this

case, recurrence variables were recomputed for a family of radius

values from 0% to 100% in steps of 1% (of the maximum distance in the

distance matrix).  Figure 2.10 depicts the results with respect to %REC

and %DET.  With increasing RADIUS values, %REC increased smoothly

to its maximum, following either a sigmoidal curve with linear scaling

(Figure 2.10A) or a more linear curve with double logarithmic scaling

(Figure 2.10B).  On the other hand, %DET exhibited a hitch or shelf with

a first local minimum at a radius of 17%.  This oddity is due to the faster

recruitment of isolated recurrent points than points contributing to

diagonal line structures as RADIUS is incremented (Figure 2.10C; see

Equation 2.9).

There are three guidelines for selecting the proper radius (in

order of preference): (1) RADIUS must fall with the linear scaling region

of the double logarithmic plot; (2) %REC must be kept low (e.g., 0.1 to

2.0%); and (3) RADIUS may or may not coincide with the first minimum

hitch in %DET.  Weighing all three factors together, a radius of 15%

was selected for the example EMG data (vertical dashed lines in Figure

2.10), which fits all three criteria.  Because there are mathematical

scaling rules linking log(%REC) with log(RADIUS), as will be discussed

below, the first guideline for RADIUS selection is preferred.  In contrast,

since there are no known rules describing the hitch region in %DET,

this latter method must be applied with caution—user beware.
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Figure 2.10.  Methods for selecting the proper radius parameter for recurrence analysis of the
control EMG recording.  (A) With step increases in RADIUS, the density of recurrence points
(%REC) increases along a sigmoid curve (M = 10).  (B) Double-logarithmic plot of %REC as a
function of RADIUS defines a linear scaling region from RADIUS = 8% to 15%.  RADIUS is
selected at 15% where %REC is 0.471% (sparse recurrence matrix).  (C) Linear plot of %DET
as a function of RADIUS showing a short plateau and small trough near RADIUS = 15% which
may or may not be coincidental.  Recurrence data computed from file EMG using program
RQS.EXE.  RQA parameters: P1-Plast = 1-1024; RANDSEQ = n; NORM = Euclid; DATA MIN = DATA
MAX = 4; EMBED MIN = EMBED MAX = 10; RESCALE = max dist; RADUS MIN = 0; RADIUS MAX
= 100; RADIUS STEP = 1; LINE = 2.
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The third parameter requiring explanation is the embedding

dimension.  Why did we set M = 10?  The mathematics underlying the

distance matrix are equivalent to the correlation integral implemented

by Grassberger and Procaccia (1983) for dimensional analysis of

dynamical systems.  Theoretically, the Grassberger-Procaccia

dimension (GPD) is a measure of the number of independent variables

participating in the system at any given instant.  Thus, GPD is another

measure of complexity, since the greater the number of participant

variables, the more complex the system.  Practically, the G-P

dimension can be estimated by observing how the number of

recurrences (#REC) scales with increases in absolute radius (R), as

shown by Equation 2.15.  The exponential form of this equation is easily

converted to its linear form by taking the logarithm of both sides,

yielding Equation 2.16.  Then, substitution into this equation of

%recurrence (%REC) for #REC and relative radius (RADIUS) for

absolute radius (R), respectively, gives Equation 2.17.

#REC = RGPD  [2.15]

log(#REC) = log(R)GPD  [2.16]

log(%REC) = log(RADIUS)GPD  [2.17]

The  G-P  Dimension  is  easily  computed  by  taking  the ratio

(or slope) of ∆log(%REC) to ∆log(RADIUS)  over a  linear  scaling

region,  as  discussed  by  Mayer-Kress  and  Holzfuss  (1987).   Such a

double-logarithmic  plot  is  illustrated  in Figure 2.11A  for  embedding
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Figure 2.11.  Relationship between log(%REC) and log(RADIUS) over a range of embedding
dimensions (M = 1 to 20) for the control EMG recording.  (A) Each curve in the family of curves
has a linear scaling region that is used to estimate the Grassberger-Procaccia dimension (GPD)
when the slope becomes unchanging with increases in M.  The dashed line refers to the same
line plotted in Figure 2.10B at M = 10.  (B) GPD plotted as a function of embedding dimension
saturates at GPD = 4.292 when M = 10, the proper embedding for this dynamic. Recurrence
data computed from file EMG using program RQS.EXE.  RQA parameters: P1-Plast = 1-1024;
RANDSEQ = n; NORM = Euclid; DATA MIN = DATA MAX = 4; EMBED MIN = 1; EMBED MAX =
20; RESCALE = max dist; RADUS MIN = 0; RADIUS MAX = 100; RADIUS STEP = 1; LINE = 2.

dimensions ranging from 1 to 20.  As shown in Figure 2.11B, as the

embedding dimension (M) increases, the slope increases to a

“plateau” of GPD = 4.292 (a fractal dimension) starting at M = 10.

Further embeddings do not result in any further increases in GPD.  This

is the reason why we selected M = 10.  As is most often the case for real

data, it should be recognized that M > GPD.  The reason for this is that

noise artificially inflates the dimension.  Parka and Chua (1989) stated
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that for noisy systems, the embedding dimension maximizes at M = 2 ×

GPD + 1.  An M of 10 for our EMG signal is very close to this theoretical

limit (M = 2 × 4.292 + 1 = 9.6).  There are numerous practical problems

associated with the estimation of M, including non-stationary dynamics,

high-dimensional attractors, and the presence of noise.  For example,

inspection of the log-log plots (Figure 2.11B) shows a worsening

“double hump” of unknown origin in the curves for M > 10.  Therefore,

we typically bypass any G-P analysis or nearest-neighbor strategy, and

usually set parameter M to 10, but never higher than 20, for real data.

RECURRENCE INTERVALS

Recurrence intervals (or recurrence times) quantify the

perioidicities expressed by dynamical systems.  By way of one

mundane example, it is proper to say that the recurrence interval (or

recurrence time) for the earth’s sun is 24 hours, day in and day out.  But

for heuristic purposes, let us revisit the coupled Hénon equations

discussed above (Equations 2.6 and 2.7) in which the constant

multiplier of the nonlinear term Xi
2 is changed from 1.4 to 1.054 as

follows:

Xi+1 = Yi + 1.0 – (1.054Xi
2),  [2.18]

Yi+1 = 0.3Xi.  [2.19]

Such minor tweaking of the equation converts the Hénon chaotic

attractor into the Hénon 16-point periodic attractor in phase space (see

16 crosshairs in Figures 2.6A, B, & C).  Expressing this periodic
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attractor in recurrence space, however, produces a series of parallel

lines spanning from border to border as shown in Figure 2.12.

Recurrence interval analysis verifies that the vertical spacing between

recurrent points throughout the entire plot (including recurrent points

in the upper and lower triangles, as well as the central diagonal) is a

perfect 16 points, as expected.  Since the border effectively truncates

diagonal lines to different lengths, an artifactual ENT > 0.0 bit/bin is

observed.

Figure 2.12. Recurrence plot of the 16-point Hénon periodic X variable.  The same variable is
plotted on the horizontal (periodic Xi) and vertical axes (periodic Xj) from iterations of coupled
Equations 2.18 and 2.19.  When vectors of 3 points (e.g. M = 3) match, recurrent points are
plotted at the corresponding (i,j) intersections.  The most striking feature of this plot is the long
diagonal line structures parallel to the main diagonal and offset by exactly 16 points.
Recurrence data computed from file HENPX using program RQD.EXE.  RQA parameters: P1-Plast

= 1001-1200; RANDSEQ = n; NORM = Euclid; DELAY = 1; EMBED = 3; RESCALE = max dist;
RADUS = 0.5; COLORBND = 1; LINE = 2.  RQA variables: %REC = 5.789; %DET = 100.000; LMAX
= 184; ENT = 3.585 (line truncation effect); TND = 12.449; %LAM = 0.000; TT = undefined.
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Moving from theoretical mathematics to practical physiology, it

is important to demonstrate the power and utility of recurrence interval

analysis on revealing subtle features in human ectroencephalographic

(EEG) signals.  To illustrate this, EEG data from a normal quiescent

subject were obtained from a local clinical electrophysiology

laboratory.  The subject was instrumented with 21 active unipolar

electrodes referenced to the nose according to the standard 10-20 EEG

recording system (electrodes spaced at intervals 10%-20% of head

circumference) (Misulis & Head, 2003).  The signals were digitized at

500 Hz and bandpass filtered (0.15 Hz - 70.0 Hz).  However, instead of

selecting just one of the active electrode sites for analysis, Euclidean

distances (ED) were computed for each instance in time (every 2 ms)

across all 21 electrodes (En) according to Equation 2.20.  In effect, an

[N,21] matrix of 21 parallel vectors was collapsed into a single [N]

vector time series with N points.

EDi = √ (E1i
2 + E2i

2 + E3i
2 + … + E20i

2 + E21i
2)  [2.20]

Recurrence analysis was conducted on 2000 points (4.0 s) of the

composite EEG signal (Euclidean vector), which is plotted horizontally

and vertically in Figure 2.13.  Because the signal was already projected

into higher dimensional space (D=21), it was inappropriate to set the

embedding dimension to anything other than one (M = 1).  The

minimum norm was chosen and the delay parameter was set equal to

one (τ = 1), but neither parameter was critical since with an embedding

dimension of one, no points were time delayed.  The radius was set to

0.2%  of  the  maximum  distance  rescaling,  insuring  that %REC < 1%.
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Figure 2.13.  Recurrence interval analysis of a normal human electroencephalogram (EEG)
digitized at 500 Hz.  The time series data are derived from computing the Euclid distances
across 21 simultaneously recorded leads of the 10-20 system of electrodes positioned around
the skull.  Voltages were updated at each instant in time (2 msec) for 40 sec (2000 data points)
for recurrence analysis.  The recurrence plot has both fine-scale and large-scale features that
were captured by measuring the vertical time interval between all recurrent points (see Figure
2.14).  Recurrence data computed from file EEG using program RQD.EXE.  RQA parameters: P1-
Plast = 1-2000; RANDSEQ = n; NORM = min norm; DELAY = 1; EMBED = 1; RESCALE = max dist;
RADIUS = 0.2; COLORBND = 1; LINE = 2.  RQA variables: %REC = 0.804; %DET = 7.318; LMAX
= 5; ENT = 0.445; TND = –0.102; %LAM = 11.207; TT = 2.087.  These EEG data were kindly
provided by Lukasz Konopka, Ph.D., Director of Biological Psychiatry, Hines V.A., Hines, IL
60141.

The recurrence plot for this system (Figure 2.13) reveals a much

more complex structuring than that observed with the Hénon 16-point

periodic system (Figure 2.12).  In fact, the seven recurrence variables

were quantified for this EEG signal as follows: %REC = 0.804%; %DET

= 7.318%; LMAX = 5; ENT = 0.445; TND = –0.102; %LAM = 11.207%; TT
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= 2.087.  The homogeneous distribution of recurrent points is quantified

by the near zero TND value, indicating the stationary state of the EEG

signal in this individual.  The %DET value indicates that the signal has

deterministic features arising from repeated (recurrent) EEG waves at

various frequencies.  Likewise, the %LAM value reveals significant

laminate structuring of recurring dynamical features in the vertical

plane (strings of multiple j-points recurring with single i-points).

However, it is the vertical spacing between recurrent points

(recurrence intervals) that is of interest to us.

Recurrence quantification interval (RQI) analysis was conducted

on this example EEG signal using the exact same parameter settings as

indicated above.  The distribution of recurrence intervals is plotted in a

double logarithmic histogram in Figure 2.14.  Of the 32,142 intervals

counted, 2,075 (6.46%) recurrence intervals are located in the first bin

at 2 ms.  These points are usually excluded as noise since they come

from adjacent points forming vertical line structures (whence see

%LAM).  Recurrence intervals spanning 4 to 398 ms were distributed

rather uniformly, but over the range from 400 through 1,600 msec the

recurrence counts scaled with recurrence time.  The remainder of

intervals from 1,602 to 3,398 ms contained mostly single-digit counts

and comprised the noise floor beyond the scaling region.  Within the

scaling regions, however, slope (S) defines the scaling relationship

between the number of intervals (#INT) and interval length (L).

#INT = LS  [2.21]

log(#INT) = log(L)S  [2.22]
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Figure 2.14.  Double-logarithmic scaling relation between number of recurrence intervals
(tally counts) and duration of recurrence intervals (ms) computed from a normal EEG signal
(Figure 2.13).  A scaling relation spans the range 400 to 1600 ms and has a significant negative
slope (p < 0.0000001) of –1.974 (dashed line) indicative of a 1/INT2 process.  Recurrence data
computed from file EEG using program RQI.EXE.  RQA parameters: P1-Plast = 1-2000; RANDSEQ
= n; NORM = max norm; DELAY = 1; EMBED = 1; RESCALE = max dist; RADUS = 0.2.

The linear scaling region (Figure 2.14) has a negative slope S =

–1.974, which is consistent with a 1/INT2 process (where INT is the

recurrence interval) and is highly significant (p < 0.000001) for the 380

points defining the scaling region.  These data indicate that there are

scaling rules in place for the lowest EEG frequency (delta < 4 Hz), but

not the higher frequencies (beta > 13 Hz; alpha > 8 Hz; theta > 4 Hz)

(Misulis & Head, 2003).  This type of RQI analysis is analogous to

uncovering 1/f scaling rules, but in the latter case the lower

frequencies (longer intervals) carry most of the power

(Bassingthwaighte et al., 1994; see also Aks, Chapter 7, and Liebovitch

& Shehadeh, Chapter 5).

Thomasson, Heoppner, Webber, and Zbilut (2001) and

Thomasson, Webber, and Zbilut (2002) performed RQI analysis on
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human EEG signals and were able to demonstrate different scaling

regions for control EEGs versus pre-ictal EEGs.  That is, just prior to

seizure activity, the scaling relation became more correlated (steeper

negative slope), consistent with a self-organizing process leading to

synchronized and focal brain activity.  These studies provide evidence

that subtle recurrence changes in the electrical dynamic may forecast

seizure states in the brain.

CROSS RECURRENCE

So far we have been speaking of recurrence quantitative analysis

from the single signal perspective.  That is, in RQA recurrence patterns

are sought within individual signals in the spirit of autocorrelation.

However, in the spirit of cross correlation, it is possible to detect

recurrence patterns shared by paired signals by cross recurrence

analysis (KRQA) (Zbilut, Giuliani, & Webber, 1998a; Marwan et al.,

2002; Marwan 2003a; see also Shockley, Chapter 4).  The mathematics

of cross recurrence, as well as the parameters and variables of cross

recurrence, all are the same as explained for auto-recurrence.  There

are two principle differences, however.  First, in KRQA distances are

computed between two different signals.  It is assumed that the two

signals arose from coupled systems, were sampled simultaneously at

the same digitization rate (which prohibits the drifting of one signal

with respect to the other), and are on the same amplitude scale (which

permits low distances between signals to be computed).  The last

requirement can be achieved by rescaling the input data over the unit

interval (minimum:maximum mapped to 0.0:1.0), provided that neither

of the paired input data streams possess strong nonstationaity (upward
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or downward drifts).  Second, in KRQA the shared symmetry between

the upper and lower triangles of the auto-recurrence plot is lost.  In fact

the entire central line of identity vanishes.  Because of these expected

differences from auto-RQA, quantitative cross-recurrence

quantifications must be made across the entire matrix (plot), not just the

upper half (upper triangle).

Shockley, Butwill, Zbilut, and Webber (2002) performed a very

simple experiment on mechanically coupled oscillators.  A tray (which

served as a driver), filled with fluids of differing viscosities (oil, syrup,

or honey), was set into reciprocal, sine-wave motion by a strong

sinusoidal motor.  A rotor blade (the follower—what was driven by the

driver) was positioned within the viscous fluid and was set into

independent motion by a pulley system and falling weight (gravity

activated).  The position of the tray and rotor were monitored by

separate motion-tracking sensors and digitized at 60 Hz.  Four

experimental runs were performed at each of three viscosities.

Transients due to acceleration were rejected and 600 points of steady

state data (10 s) were collected for each trial.  KRQA was performed

using the driver-tray as the i-signal (i-vector, Vi) and the follower-rotor

as the j-signal (j-vector, Vj).  The cross recurrence plot for one of the

trials at a medium coupling viscosity is presented in Figure 2.15 (M = 5;

DELAY = 1; RADIUS = 2.0%).  The long diagonal, always present for

auto-recurrence plots (e.g., Figures 2.2, 2.7, 2.8, 2.12, and 2.13), is

noticeably absent.  But short diagonals appear in the plot wherever

waveform coupling occurs between the driver (independent and

constant  frequency)  and  rotor  (dependent  and  variable   frequency).
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Figure 2.15. Cross recurrence plot of coupled oscillators in a low-viscosity coupling.  The
positions of the different oscillators are plotted along the horizontal axis (driver oscillator) or
vertical axis (rotor oscillator).  When vectors of 5 points each match (e.g. M = 5), recurrent
points are plotted at the corresponding i,j intersections.  The most striking feature of this plot is
the unusual distribution of recurrent points reflective of various phasic couplings between the
two oscillators.  Recurrence data computed from files DRIVER and ROTOR using program
KRQD.EXE.  RQA parameters: P1-Plast = 1-596; RANDSEQ = n; NORM = Euclid; DELAY = 1;
EMBED = 5; RESCALE = max dist; RADUS = 2; COLORBND = 1; LINE = 2.  RQA variables: %REC
= 1.480; %DET = 94.103; LMAX = 24; ENT = 3.041; TND = –0.813; %LAM = 74.834; TT = 3.300.

Cross recurrence interval analysis (KRQI) on the coupled

oscillators results in the frequency spectrum plotted in Figure 2.16.  To

accomplish this, recurrence intervals were transformed to the

frequency domain by taking their reciprocals.  For spectral

comparison, the Fast Fourier transform (FFT) spectrum  is computed  on
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Figure 2.16.  Frequency characteristics of the low-viscosity coupled driver-rotor system from
linear (FFT) and non-linear (KRQI) perspectives.  Spectral analysis (FFT) of the rotor dynamic
shows a dominant (uncoupled) frequency faster than the driver frequency at low resolution.
Cross recurrence analysis (1/KRQI) reveals similar features but with greater details at high
resolution.  For example, the high frequency peak is splayed out over a wider frequency band
due to subtle nonlinear interactions not detected by FFT.  Recurrence data computed from
coupled files DRIVER and ROTOR using program KRQI.EXE.  RQA parameters: P1-Plast = 1-596;
RANDSEQ = n; NORM = Euclid; DELAY = 1; EMBED = 5; RESCALE = max dist; RADUS = 2; LINE
= 2.

the rotor data only.  The linear FFT spectrum reports two peaks, a low

amplitude peak near the driver frequency (dashed line), and a high

amplitude peak at a higher frequency (non-harmonic).  The nonlinear

KRQI spectrum provides much more details on the partially coupled

system.  More spectral power is found at the higher, uncoupled

frequency, but the frequency band is splayed out due to nonlinear

interactions between the rotor and driver.  At the lower, coupled

frequency (dashed line), the KRQI resolution is superior to the FFT

resolution.  More importantly, subtle changes in relative viscosity from
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0.693 to 0.711 units (1.00 units for high viscosity coupling) gave

significant changes in KRQA variables %REC, %DET, and LMAX (not

shown).  This example illustrates the ease with which cross-recurrence

analysis handles non-linearities in short data sets, and at a higher

resolution than the FFT to boot.

There is still much work to be done with respect to cross-

recurrence analysis, but it is posited that KRQA may be a formidable

tool in the examination of coupled oscillators.  This may be particularly

true for coupled biological oscillators where subtle, short scale

changes in coupling may indicate (forecast) altered dynamics that may

or may not be healthful for the examined system in part or even the

entire organism as a whole.  Shockley (Chapter 4) presents a

psychological application of KRQA.

RECURRENCE PATTERNS OF SPEECH

Recurrence analysis, auto-recurrence or cross-recurrence, is

fully amenable to linguistic systems or symbolic dynamics.  Actually,

one of the easiest explanations of recurrence can be purchased at the

price of the simple children’s book authored by Dr. Seuss (Geisel,

1960), Green Eggs and Ham.  Webber and Zbilut (1996, 1998) have

repeatedly used this example for instructive purposes.  The reasoning

goes as follows.  Ask a child this riddle, “How can Dr. Seuss write a

book with 812 words if he has a limited vocabulary of only 50 words?”

The obvious answer is that words must be reused—that is, words recur.

While we are at it, why not ask the child, “How can books with

thousands of words be written in English, if there are only 26 alphabet

letters available?”  In this case, letters must be reused.  So at the word
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level or orthographic (spelling) level, symbols are simply reused in

any combination desired by the author, as long as they correspond to

allowable words in the language of choice.  Common experience

informs us that letters in words or words in sentences do not, and need

not, appear at periodic intervals.  Rather, actual linguistic sequences

are at once highly nonlinear and highly meaningful as well.  In this

context, Orsucci, Walter, Giuliani, Webber, and Zbilut (1999)

implemented RQA to study the linguistic structuring of American

poems, Swedish poems, and Italian translations of the Swedish poems.

They found invariance among the various language exemplars,

suggesting hidden structuring at the orthographic level.

It is intriguing to consider the potential ability of recurrence

strategies in the analysis of written text or spoken words as first

explored by Orsucci et al. (1999) using American and Italian speech

samples.  Do different authors or various speakers have specific

recurrence signatures that betray their individual identities?  We might

proceed at the orthographic level, rendering any speech text numeric

by arbitrarily substituting integers for letters: A=1; B=2; C=3;…; X=24;

y=25; Z=26; and for numbers: 0=27; 1=28; 2=29 …; 7=34; 8=35; 9=36.

We can keep things simple by ignoring cases of letters, all punctuation

marks, spaces, carriage returns, and linefeeds.  But how should the

recurrence parameters be set?  Well, since the encoding scheme is

entirely arbitrary (we could have used: Z=1; Y=2; X=3; …; etc.), the

most important constraint is that the radius must be set to 0 distance

units.  This will insure that only identical letters (unique integers) will

recur with each other.   The embedding dimension can be set to one or

higher, but for M > 1 the delay should be set to one so as not to skip any
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letters in the string.  The length of the text sets the maximum size of the

window, but smaller windows can parcel the text into a series of

epochs.  It makes no difference whether the distance matrix is rescaled

or not, because the only allowable radius is 0 units.  The line parameter

should be set to 2, lest one wants to exclude short words longer than

two characters each (but that is not advised).  With these preliminaries

complete, what might diagonal line structures in the recurrence plot

signify?  If only identical letters count as recurrent points, a string of

diagonal recurrences must indicate that the identical string of

characters appears at different positions in the text.  Actually, lines of

varying length must represent words of varying length.  Very loosely

speaking, we might (correctly) envisage words as vectors of letters!  In

any case, recurrence quantifications can be captured in the seven

recurrence variables we have discussed at length with respect to other

dynamical systems.

But let us leave the letter level, and focus rather on words.  We

now face a new problem, one that involves choosing a scheme for

encoding words.  Unlike English letters that are limited to 26 characters

and 10 digits, English words can number in the hundreds of thousands.

For example, The Oxford English Dictionary Online (2003) has some

290,000 entries and 616,500 different English word forms.  To encode

words, we can assign ascending integer values to each new word, but

whenever a former word recurs, its old integer value must be reused.

To keep it simple, we can treat all punctuation marks as spaces.  After

the full text is encoded, the total number of integers in the derived file

must equal the total number of words in the text.  The number of
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different words in the text (vocabulary size) will be represented by the

numerical value of the largest integer.

It has long been known that the psychiatric illness of

schizophrenia is characterized by disordered speech (Kasanin & Lewis,

1944).  So to provide a practical example of quantitative textual analysis

using RQA strategies, let us examine the speech patterns of a

schizophrenic patient and “normal” academic as quoted by Wróbel

(1990).  Each quote consists of exactly 165 words.  First quoted is the

schizophrenic (Wróbel, 1990, p. 77), the context of which reveals this

patient’s altered sense of reality.  To get the gist of how the 165 words

were encoded, here are the codes for the first 26 words (“pre-started”

counts as 2 words due to replacement of the dash with a space): 1-2-3-

4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-14-15-16-3-19-18-14-20 (note

the repeat pattern of 14-15-16: “before me and”):

In Wroclaw I pre-started to pray, you know, the
psychiatrist Kobohen came before me and he stood before
me and I also stood before him, because he came to the
ward on a visit, you know, he came before and he says:
oh, that's the new one—he says—he arrived today—he
says and he made a sign of the cross, you know, like this
before me.  I felt in the presence of that such terrible
desires to pray because of that cross, that I began praying
incredibly, I prostrated myself, I prayed on my knees,
prostrate, I so implored the Lord God as much as possible,
you know, and I felt myself a ruler, you know, I thought I
was the supreme ruler on this earth, that over the whole
world I was the supreme ruler, I began praying so
incredibly with various crosses, yes I prayed so incredibly
with crosses, with perfection and in different ways.  He
was dismissed from there, …
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Second quoted is a normal academic (Wróbel, 1990, p. 99) who

speaks logically and with intent purpose.  The first 26 words (of 165

words) were encoded as follows: 1-2-3-4-5-6-7-8-9-10-11-9-10-12-13-14-

15-6-16-17-18-19-20-21-22-23 (note the repeat pattern of 9-10: “of the”).

Newtonian mechanics, for example, imposes a unified
form of the description of the world.  Let us imagine a
white surface with irregular black spots on it.  We then say
that whatever kind of picture these make, I shall be able to
approximate as closely as I wish to the description of it by
covering the surface with a sufficiently fine square mesh,
and saying of every square whether it is black or white.  In
this way I shall have imposed a unified form on the
description of surface.  The form is optional, since I could
have achieved the same result by using a net with a
triangular or hexagonal mesh.  Possibly the use of a
triangular mesh would have made the description simpler:
that is to say, it might be that we could describe the
surface more accurately with a coarse triangular mesh
than with a fine square mesh (or conversely), and so on.
The different nets correspond to different systems for
describing the world.

Recurrence plots were constructed for the 165 words of text

comprising each subject’s speech as shown in Figure 2.17.  Here, M =

1, DELAY = 1, and RADIUS = 0.  The “time series” beside each

recurrence plot present as “saw-tooth” patterns due to the reusing

(recurrence) of words.  Recurrent points are plotted only when exact

word matches are found.  Recurrence quantifications are reported in

Table 2.1  for  these  two  subjects,  both  at  the  orthographic and word

levels, before and after random shuffling.  The 742-character normal

text was truncated to 670 characters to match  the number of  characters
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Figure 2.17.  Recurrence analysis of human speech patterns at the word level.  (A)
Schizophrenic speech.  (B) Normal speech.  Recurrences occur only for exact word matches.
Recurrence data computed from individual files SCHIZWRD and NORMWRD using program
RQD.EXE.  RQA parameters: P1-Plast = 1-165; RANDSEQ = n; NORM = Euclid; DELAY = 1; EMBED
= 1; RESCALE = absolute; RADUS = 0; COLORBND = 1; LINE = 2.  RQA variables for
schizophrenic speech (A): %REC = 1.870; %DET = 26.087; LMAX = 5; ENT = 0.675; TND =
–8.361; %LAM = 0.000; TT = undefined.  RQA variables for normal speech (B): %REC = 1.567;
%DET = 23.113; LMAX = 3; ENT = 0.773; TND = –1.898; %LAM = 0.000; TT = undefined.  See
also Table 1.
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in  the schizophrenic text.  Cursory review of the data reveal more

differences at the word level than orthographic level.  Shuffling

decidedly distorts the deterministic structures.  Admittedly, these

examples are only anecdotal exercises without statistical merit.  But

what is being emphasized is the potential for nonlinear recurrence

methodology to be employed on different speech patterns from many

subjects, with careful attention being paid to proper experimental

design.

Table 2.1.  Recurrence quantification analysis of human speech patterns.  Data were
computed from native sequences (and shuffled sequences) of letters (data files
SCHIZLET and NORMLET) and words (data files SCHIZWRD and NORMWRD) using
program RQD.EXE.

RQA
Variable

Schizophrenic
Letters

(N = 670)

Normal
Letters

(N = 670)

Schizophrenic
Words

(N = 165)

Normal
Words

(N = 165)

%REC 6.511%

(6.511%)

6.312%

(6.312%)

1.870%

(1.870%)

1.567%

(1.567%)

%DET 22.257%

(12.019%)

22.280%

(11.600%)

26.087%

(3.953%)

23.113%

(0.943%)

LMAX 19

(4)

16

(4)

5

(2)

3

(2)

ENT 0.995

(0.317)

0.986

(0.359)

0.675

(0.000)

0.773

(0.773)

TND 0.104

(0.029)

0.251

(0.240)

–8.361

(2.108)

–1.898

(-1.898)

%LAM 4.495%

(12.636%)

1.484%

(18.576%)

0.000%

(11.067%)

0.000%

(0.943%)

TT 2.000

(2.185)

2.000

(2.104)

2.000

(undefined)

undefined

(2.000)
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RECURRENCE PATTERNS OF PROTEINS

It is a simple matter to move from recurrence analysis of English

texts to amino acid patterns of proteins.  The amino acid alphabet is a

20-letter code of naturally occurring amino acids found in eukaryotic

proteins.  Protein function depends upon protein shape in 3-

dimensional space (tertiary and quartenary structures), and protein

shape depends upon the specific 1-dimensional amino acid sequence.

Thus, recurrence analysis of amino acid sequences may yield

interesting differences among the various classes of proteins.  One

approach would be to encode amino acids with unique integers from 1

to 20 and perform RQA computations using M = 1, DELAY = 1, and

RADIUS = 0.  When this is done, however, it has been shown that amino

acid sequences are only slightly different from shuffled sequences

(Webber & Zbilut, 1998).  That is, naturally occurring sequences are

almost random sequences, at least in terms of arbitrary amino acid

names (residues).  But even at this lowly name level, cross recurrence

plots may prove useful in identifying stretches of identical residue

patches (e.g., between protein isoforms) which would graphically plot

as long diagonal lines (identical matches) with intervening gaps (mis-

matches).

A change in perspective is in order.  Thinking through the

problem, it becomes clear that what imparts a 3-dimensional shape to

proteins is the physical properties of their 1-dimensional string of

amino acids.  Specific sequences of amino acids twist and fold on

themselves, forming protein globules with specific features.  Two of the

strongest physical properties that amino possess are their

hydrophobicity and net charge.  By merely substituting the name of
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each amino acid by one of its physical properties, it is possible to

generate new sequence amenable for recurrence analysis in higher

dimensions.

 To illustrate, consider human hemoglobin, a quartenary protein

with two alpha-chains (141 amino acids each) and two beta-chains (146

amino acids each) of amino acids.  Recurrence quantifications were

performed on the alpha chain, first at the orthographic level (M = 1;

DELAY = 1; RADIUS = 0% maximum distance), and second following

hydrophobic substitutions using the hydrophobicity scale of Miyazawa

and Jernigan (1996) (M = 3; DELAY = 1; RADIUS = 5% maximum

distance).  Recurrence plots for both representations of the same

system are shown in Figure 2.18.  Recurrences seem denser for the

hemoglobin residue names (orthographic level) then for their

hydrophobic substitutions.  Conversely, the diagonal line structuring

seems to be more common in hydrophobic space.  But we cannot trust

our eyes, which always see things from our own biased perspective.

Nevertheless, these first impressions are confirmed in the data of Table

2.2, which lists the results of RQA performed on native residue

sequences as well as their randomly shuffled versions.  Thus the

hydrophobic representation of hemoglobin has a lower %REC but

higher %DET than at the residue name (“spelling”) level.  The

hydrophobic signal is also more complex (higher ENT value), a

reflection of its greater non-stationarity (higher absolute TND value).

The bottom line is that by transforming single-letter amino acid

residues  into  hydrophobic  signals,  the  amino-acid  sequence  can be
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Figure 2.18.  Recurrence analysis of human hemoglobin protein (alpha chain) at two levels.
(A) Residue name level.  Recurrences occur only for identical residue matches.  Recurrence
data computed from file HEMOALET using program RQD.EXE.  RQA parameters: P1-Plast = 1-139;
RANDSEQ = n; NORM = Euclid; DELAY = 1; EMBED = 1; RESCALE = absolute; RADUS = 0;
COLORBND = 1; LINE = 2.  RQA variables: %REC = 7.518; %DET = 15.633; LMAX = 3; ENT =
0.219; TND = –2.002; %LAM = 12.129; TT = 2.000.  (B) Residue hydrophobicity level.
Recurrences occur for similar hydrophobic patches.  Recurrence data computed from file
HEMOAHYD using program RQD.EXE.  RQA parameters: P1-Plast = 1-139; RANDSEQ = n; NORM =
Euclid; DELAY = 1; EMBED = 3; RESCALE = max dist; RADUS = 10; COLORBND = 1; LINE = 2.
RQA variables: %REC = 2.669; %DET = 46.875; LMAX = 5; ENT = 1.113; TND = –6.289; %LAM =
0.781; TT = 2.000.  See also Table 2.
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projected into higher dimensional space (M > 1) where approximate

recurrences become legitimate (RADIUS > 0).  For these and other

reasons RQA is making significant headway into the problem of protein

folding (Zbilut, Sirabella, Giuliani, Manetti, Colosimo, & Webber, 2002;

Giuliani, Benigni, Zbilut, Webber, & Sirabella, 2002).

Table 2.2.  Recurrence quantification analysis of human hemoglobin protein.  Data were
computed from native sequences (and shuffled sequences) of protein letters (data file
HEMOALET) and protein hydrophobicities (data file HEMOAHYD) using program
RQD.EXE.

RQA
Variable

Hemoglobin-A
Residue Names

(N = 141)

Hemoglobin-A
Hydrophobicity

(N = 141)

%REC 7.518%

(7.518%)

2.669%

(2.627%)

%DET 15.633%

(10.377%)

46.875%

(41.667%)

LMAX 3

(3)

5

(4)

ENT 0.219

(0.176)

1.113

(0.957)

TND -2.002

(-8.333)

-6.289

(-5.814)

%LAM 12.129%

(11.860%)

0.781%

(8.730%)

TT 2.000

(2.000)

2.000

(2.000)
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SUMMARY

The focus on this chapter has been on the proper implementation

strategies of RQA.  We have not emphasized the large and growing

recurrence literature amassed over the last decade.  Most of this

literature, exceeding 170 references, is accessible from the website of

Marwan (2003b).  But it is appropriate here to just list several of the

fields impacted by nonlinear recurrence analysis over the last decade:

Chaos science (Trulla, Giuliani, Zbilut, & Webber, 1996), respiration

(Webber, 1991), heartbeat dynamics (Giuliani, Piccirillo, Marigliano, &

Colosimo, 1998), blood pressure (Mestivier, Dabire, Safar, & Chau,

1998), otoacoustic emissions (Zimatore, Hatzopoulos, Giuliani, Martini,

& Colosimo, 2002), muscle fatigue (Farina, Fattorini, Felici, & Filligoi,

2002), postural control (Riley, Balasubramaniam, & Turvey, 1999),

genomics (Bultrini, Pizzi, Del Giudice, & Frontali, 2003), proteomics

(Zbilut et al., 2002), molecular dynamics (Manetti, Ceruso, Giuliani,

Webber, & Zbilut, 1999), and even finance (Antoniou & Vorlow, 2000).

In fact, any time series (or spatial series, for that matter) is amenable to

RQA.  If it wiggles in time (physiology) or space (anatomy) RQA can

quantify the dynamic.

For parting thoughts, the mere fact that ants can lift 50 times their

body weight whereas humans cannot is one lowly illustration of non-

linearity in our shared world with insects.  As we have seen, many of

the dynamical, real-world systems common to man are notoriously non-

linear, non-stationary, and noisy.  To successfully analyze such systems

it seems best to use non-linear tools that are independent of prescribed

statistical distributions of the data (e.g., Gaussian), can deal with short

data sets (e.g., polypeptides), are not stymied by actual signal



Recurrence Quantification Analysis

82

transients and outliers (e.g., observations beyond a few standard

deviations of the mean), and can project the input signal into higher-

dimensional space (e.g., embedding capabilities).  So far, recurrence

analysis seems to fit the bill in all of these important aspects.  But the

recurrence approach is not a stand-alone technique, some kind of end-

all, be-all of extant nonlinear dynamical tools.  For instance, significant

advances are also being made by combining recurrence quantification

analysis (RQA) with principle component analysis (PCA).  By this means

the complex relationship among the several recurrence variables can

be objectively compared and processed as an ensemble (Zbilut,

Giuliani, & Webber, 1998b; Giuliani, Colafranceschi, Webber, & Zbilut,

2001).

RQA functions like a microscope, snooping out higher-

dimensional subtleties in the dynamics that are not obvious its first-

dimensional representation.  Returning to the animal world, one

analogy would be with farmers who can best forecast weather patterns

by observing altered behaviors of their barnyard livestock.  Evidently,

these domesticated animals can sense actual physical phenomena

beyond the human sensory range.  Indeed, Marino and Frilot (2003)

used RQA strategies to convincingly demonstrate the sensitivity of

rabbits to magnetic fields.  In addition, Mohr, Langbein, and Nürnberg

(2002) applied RQA to assess stress levels in calves and cows.  But

whatever the case, whether it be forecasting dynamical events in the

medical field, geophysics, or meteorology, the future of recurrence

analysis looks bright and promising.
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SOFTWARE

Some investigators are writing their own programs to perform

recurrence quantifications.  But for those wishing to download

recurrence software from the World Wide Web, at least three sites are

available as shown below: Visual Recurrence Analysis (VRA) from

Eugene Kononov; Cross Recurrence Plots-Toolbox (CRP) from Norbert

Marwan; R Q A  (Recurrence Quantification Analysis) from Charles

Webber.

VRA 4.6: http://home.netcom.com/~eugenek/download.html

CRP 4.5:  http://www.agnld.uni-potsdam.de/~marwan/intro.html

RQA 8.1:  http://homepages.luc.edu/~cwebber

http://home.netcom.com/~eugenek/download.html
http://www.agnld.uni-potsdam.de/~marwan/intro.html
http://homepages.luc.edu/~cwebber
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APPENDIX: Mathematical Construction of the Recurrence Matrix

(Webber, 2004)

RQA employs the method of time delays to embed experimental data into
higher dimensions.  Explicit examples of how distance matrices (DM) and
recurrence matrices (RM) are constructed for Euclidean, maximum, and
minimum norms are detailed below for a contrived time-series vector (TS)
with 29 elements.

TS = [3.7, 9.2, 2.1, –5.4, 0.0, –10.9, 9.2, 3.1, 1.7, 1.8, –0.3, –4.9, 2.7, 3.5, 
7.5, –9.9, –9.9, –4.7, 1.3, 2.7, 7.6, 3.9, 7.3, 8.0, 0.3, –1.9, 5.1, 8.8, 8.2]

For DELAY=8, EMBED=4, FIRST=1 and LAST=5, the following 5 time-delay
vectors are constructed:

V1 = [+3.7, +1.7, –9.9, +0.3]
V2 = [+9.2, +1.8, –4.7, –1.9]
V3 = [+2.1, –0.3, +1.3, +5.1]
V4 = [–5.4, –4.9, +2.7, +8.8]
V5 = [+0.0, +2.7, +7.6, +8.2].

Comparison of the 5 vectors constructs a single 5 × 5 recurrence matrix of
distances for each of the 3 norm types.  For example, the Euclidean distance
between vectors V4 and V5 is calculated as follows:

DM(Euclid norm at i=4, j=5) = SQRT (SQR(–5.4 – 0.0)+(SQR(–4.9 – 2.7)+
SQR(2.7 – 7.6) + SQR(8.8 – 8.2)) = 10.549.

To compute the maximum and minimum distances between vectors V4 and
V5, the vectors are compared element by element.

ABS(–5.4 – 0.0) = 5.4
ABS(–4.9 – 2.7) = 7.6 (largest difference)
ABS(2.7 – 7.6)  = 4.9
ABS(8.8 – 8.2)  = 0.6 (smallest difference)

By definition, maximum and minimum distances are simply the maximum and
minimum differences, respectfully.

DM(max norm at i=4, j=5) = 7.6
DM(min norm at i=4, j=5) = 0.6
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This procedure is repeated for each cell, giving the following results for
DM(i,j).  Only the distances in the upper triangle are shown since the lower
half is perfectly symmetrical.  Note that the central diagonal is designated by
0.00 distances (vector identity matches).

DM(Euclid norm) =
[1,5]=19.58; [2,5]=18.41; [3,5]=7.92; [4,5]=10.55; [5,5]=0.00
[1,4]=18.90; [2,4]=20.67; [3,4]=9.65; [4,4]=0.00
[1,3]=12.45; [2,3]=11.83; [3,3]=0.00
[1,2]=7.88; [2,2]=0.00
[1,1]=0.00

DM(max norm) =
[1,5]=17.50; [2,5]=12.30; [3,5]=6.30; [4,5]=7.60; [5,5]=0.00
[1,4]=12.60; [2,4]=14.60; [3,4]=7.50; [4,4]=0.00
[1,3]=11.20; [2,3]=7.10; [3,3]=0.00
[1,2]=5.50;  [2,2]=0.00
[1,1]=0.00

DM(min norm) =
[1,5]=1.00; [2,5]=0.90; [3,5]=2.10; [4,5]=0.60; [5,5]=0.00
[1,4]=6.60; [2,4]=6.70; [3,4]=1.40; [4,4]=0.00
[1,3]=1.60; [2,3]=2.10; [3,3]=0.00
[1,2]=0.10; [2,2]=0.00
[1,1]=0.00

These distances are all expressed in absolute units and can be retained as
such by selecting rescaling option 1.

By selecting rescaling option 2, RM distances are normalized to the mean
distance of the RM by dividing each cell by the absolute mean distance and
multiplying by 100.  All central diagonal values of zero are excluded from the
calculation of mean distance.

DM mean distance (Euclid norm) = 13.783 = 100.0%
DM mean distance (max norm) = 10.220 = 100.0%
DM mean distance (min norm) = 2.310 = 100.0%
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By selecting rescaling option 3, DM distances are normalized to the maximum
distance of the DM by dividing each cell by the absolute maximum distance
and multiplying by 100.  Be careful not to confuse max distance and max
norm, which are different.

DM max distance (Euclid norm) = 20.671 = 100.0%
DM max distance (max norm) = 17.500 = 100.0%
DM max distance (min norm) = 6.700 = 100.0%

Recurrence matrices are derived from distance matrices by setting a RADIUS
threshold.  As shown below, the Heavyside function assigns values of 0 or 1 to
array elements.  The RADIUS parameter is always relative to the reported
MAXDIST, whether it be expressed in absolute units or relative units.  Only
those distances in RM[I,J] equal to or less than the RADIUS are defined as
recurrent points at coordinates I, J.

RM (Euclid norm with RADIUS of 8.0 ) =
     [1,5]=0; [2,5]=0; [3,5]=1; [4,5]=0; [5,5]=1
     [1,4]=0; [2,4]=0; [3,4]=0; [4,4]=1
     [1,3]=0; [2,3]=0; [3,3]=1
     [1,2]=1;  [2,2]=1
     [1,1]=1

     RM (max norm with RADIUS of 12.3) =
     [1,5]=0; [2,5]=1; [3,5]=1; [4,5]=1; [5,5]=1
     [1,4]=0; [2,4]=0; [3,4]=1; [4,4]=1
     [1,3]=1; [2,3]=1; [3,3]=1
     [1,2]=1; [2,2]=1
     [1,1]=1

RM (min norm with RADIUS of 1.2) =
     [1,5]=1; [2,5]=1; [3,5]=0; [4,5]=1; [5,5]=1
     [1,4]=0; [2,4]=0; [3,4]=0; [4,4]=1
     [1,3]=0; [2,3]=0; [3,3]=1
     [1,2]=1; [2,2]=1
     [1,1]=1

RQA looks for patterns among these recurrent points, and this need not/must
not be done manually (too subjective).  Objective pattern recognition
algorithms are written into the many recurrence programs to define the RQA
variables %REC, %DET, ENT, LMAX, TND, %LAM, and TT.
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