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INTRODUCTION

This chapter is a Word version of the PowerPoint presentation

given by Dr. Larry S. Liebovitch at the NSF Nonlinear Methods in

Psychology Workshop, October 24-25, 2003 at George Mason

University, Fairfax, VA.  The PowerPoint presentation itself is also

available as a part of this web book.  Here the notes which can be seen

on the PowerPoint presentation by using “Normal View” are presented

as text around their respective PowerPoint slides.  The concept here is

to try to reproduce the look and feel of the presentation at the

workshop.  Therefore, this is not, and is not meant to be, your usual

“print” article.  The form of the language here is more typical of

spoken, rather than written, English.  The form of the graphics is

sparser, larger pictures captioned with larger fonts, that is more typical

of PowerPoint presentations than printed illustrations.  We hope that

this experimental format may provide a simpler introduction to fractals

than that of a more formal presentation.  We also hope that the

availability of the PowerPoint file will be of use in teaching these

materials and may also serve as a starting point for others to customize

these slides for their own applications.

This chapter is about “fractals”.  Objects in space can have fractal

properties. Time series of values can have fractal properties.  Sets of

numbers can have fractal properties.  Much of the statistics that you are

familiar with deals with the “linear” properties of data.  Fractals can

help us describe some “non-linear” properties of data.
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Most data are characterized by the mean and standard deviation, like

45.3 ± 0.3.  You’ll learn here that if the data are fractal, those means and

standard deviations are meaningless!  A pretty basic change in the

simplest way we handle data.

Fractals are important because

they CHANGE the most basic

ways we analyze and understand

experimental data.
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We’ll start with objects.  Let’s first see the difference between the non-

fractal and fractal objects.

Properties of Objects
in Space

Non-Fractal and Fractal Objects are different.
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As we enlarge a non-fractal object, no new details appear.

Non-Fractal

Properties of Objects in Space
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But, as we enlarge a fractal object we keep seeing ever smaller pieces.

For example, this series of pictures could show first the inside of the

intestine, then the crypts between the cells, then the microvilli on each

cell.  The smaller pieces are copies of the larger pieces.  They are not

exact smaller copies, but they are smaller replicas that are kind of like

the larger pieces.

Fractal

Properties of Objects in Space
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A non-fractal object has most pieces that are about the same size.

Non - Fractal

Size of Features

1 cm

1 characteristic
scale

Properties of Objects in Space
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A fractal object has pieces of all different sizes.  The variation in the size

of the pieces of fractal objects is much larger than the variation in the

size of the pieces of non-fractal objects.  Typically, there are a few big

pieces, some medium-sized pieces, and very many tiny pieces.

Fractal

Size of Features

2 cm

1 cm

1/2 cm

1/4 cm

many different scales

Properties of Objects in Space
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Fractal objects have interesting properties.  Here we describe those

properties very briefly.  Then later, we will describe them in more

detail.

Properties of Fractal Objects

Self-Similarity.
The little pieces are smaller copies of the larger pieces.

Scaling.
The values measured depend on the resolution used to
make the measurement.

Statistics.
The “average” size depends on the resolution used to
make the measurement.
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A tree is fractal.  It has a few large branches, some medium-sized

branches, and very many small branches.  A tree is self-similar: The

little branches are smaller copies of the larger branches.  There is a

scaling: The length and thickness of each branch depends on which

branch we measure.  There is no average size of a branch: The greater

the number of smaller branches we include, the smaller is the

“average” length and thickness.

This tree is from http://www.feebleminds-gifs.com/trees23.jpg.

Example of a Fractal

A tree is fractal

from http://www.feebleminds-gifs.com/trees23.jpg
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The pattern of lightning in the sky is fractal.  It has a few large

branches, some medium-sized branches, and very many small

branches.  The lightning pattern is self-similar: The little branches are

smaller copies of the larger branches.  There is a scaling: The length of

each branch depends on which branch we measure.  There is no

average size of a branch: The greater the number of smaller branches

we include, the smaller is the “average” length and thickness.

from http://bobqat.com/Mazama/Sky/013.html

Example of a Fractal

Lightning is fractal
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The pattern of clouds in the sky is fractal.  They are made up of a few

big clouds, some medium-sized clouds, and very many small clouds.

The cloud pattern is self-similar: The little clouds are smaller copies of

the larger clouds.  There is a scaling: The size of each cloud depends

on which cloud we measure.  There is no average size of a cloud: The

greater the number of smaller clouds we include, the smaller is the

“average” size of a cloud.

Example of a Fractal

Clouds are fractal

From http://www.feebleminds-gifs.com/cloud-13.jpg
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The pattern of paint colors in a Jackson Pollack painting is fractal.  The

pattern is made up of a few big swirls, some medium-sized swirls, and

very many small swirls.  The pattern is self-similar: The little swirls are

smaller copies of the larger swirls.  There is a scaling: The size of each

swirl depends on which swirl we measure.  There is no average size of

a swirl: The greater the number of smaller swirls we include, the

smaller is the “average” size of a swirl.

Example of a Fractal

A Pollock Painting is Fractal

From R. P. Taylor. 2002. Order in Pollock’s Chaos, Sci. Amer. Dec. 2002
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Fractals

Self-Similarity

Self-similarity: Objects or processes whose small pieces resemble the

whole.
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The coastline, the fractal border between the land and the sea, has

many bays and peninsulas.  As you magnify the coastline you see ever

smaller bays and peninsulas.  The structure at a large scale is similar to

the structure at a small scale.  It is similar to itself at different scales.

This is called self-similarity.

Water

Land

Water

Land

Water

Land

Self-Similarity
Pieces resemble the

whole.
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This is the Sierpinski Triangle.  In this mathematical object each little

piece is an exact smaller copy of the whole object.

Sierpinski Triangle
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The blood vessels in the retina are self-similar.  The branching of the

larger vessels is like the branching of the smaller vessels.  The airways

in the lung are self-similar.  The branching of the larger airways is like

the branching of the smaller airways.  In real biological objects like

these, each little piece is not an exact copy of the whole object.  It is

kind of like the whole object which is known as statistical self-similarity.

Branching Patterns
blood vessels

Family, Masters, and Platt 1989
Physica D38:98-103
Mainster 1990 Eye 4:235-241

in the retina
air ways
in the lungs
West and Goldberger 1987
Am. Sci. 75:354-365
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Let’s try to understand statistical self-similarity.  Here is an

unrealistically simplified picture of the blood vessels in the retina.  If

we ask how many vessels are there of each different size we see that

there is one that is 40mm long, two that are 20mm long, four that are

10mm long, and eight that are 5 mm long.

Blood Vessels in the Retina
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We can plot how many vessels there are of each size.  This is called the

Probability Density Function (PDF).  A power law distribution is

evidenced in a straight line on a plot of log (number) vs. log (size).

PDF - Probability Density Function

HOW OFTEN there is THIS SIZE

Straight line on log-log plot
= Power Law
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The PDF of the large vessels is a straight line on a plot of log (number)

vs. log(size).  There are a few big-big vessels, many medium-big

vessels, and a huge number of small-big vessels.

The PDF of the small vessels is also a straight line on a plot of

log(Number) vs. Log(size).  There are a few big-small vessels, many

medium-small vessels, and a huge number of small-small vessels.

The PDF of the big vessels has the same shape (i.e., is similar to) the

PDF of the small vessels.  The PDF is a measure of the statistics of the

vessels.  So, the PDF (the statistics) of the large vessels is similar to the

PDF (the statistics) of the small vessels.  This is statistical self-similarity.

The small pieces are not exact copies of the large pieces, but the

statistics of the small pieces are similar to the statistics of the large

pieces.

Statistical Self-Similarity

The statistics of the big pieces is the same
as the statistics of the small pieces.

Number

1000100101
1

10

100

1000

1000100101
1

10

100

1000

size in µm size in mm

NumberSMALL
blood 

vessels

BIG
blood

vessels
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Fractals are not only objects in space, but can also be processes in

time.  There are proteins, called “ion channels,” in the fatty membranes

of living cells that let ions, like sodium and potassium, enter or exit the

cell.

Fractal Properties in Time: Currents
Through Ion Channels
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A small pipette can suck up a small piece of cell membrane with only

one ion channel in it, and even it tear it off and away from the cell.  The

movement of sodium or potassium through the ion channel produces an

electrical current that can be measured.  It’s a pretty small current, a

picoAmp, which is about one billionth (1/1,000,000,000) of the current

from a “D” battery.  This is called the “Patch Clamp.”  What’s really

interesting is that these ion channel proteins act like little electrical

switches.  Either they are either fully open or fully closed to the

movement of sodium or potassium.  They switch, all the time, between

these fully open and fully closed states.  It’s impressive to watch this

technology measure the changes in a single molecule at a time.

Fractal Properties in Time: Currents
Through Ion Channels
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These open and closed times are fractal!  If you record them and play

them back slowly you see a sequences of open and closed times.  But if

you take one segment of time, and play it back at higher resolution, you

see that it actually consists of many briefer open and closed times.  It is

self-similar in time.

Currents Through Ion Channels

ATP sensitive potassium channel in
cell from the pancreas

Gilles, Falke, and Misler (Liebovitch 1990 Ann. N.Y. Acad. Sci. 591:375-391)

5 sec

5 msec

5 pA

FC = 10 Hz

FC = 1k Hz
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Here is a histogram of the times (in ms) that one channel was closed.

The recording was made at the fastest time resolution, allowing the

briefest closed times to be recorded.  The PDF is mostly a straight line

on this log (number) versus time (t) plot, but with an occasional longer

closed time.  Data with fractal properties often have unusual events that

occur more often than expected from the usual “Bell Curve.”  Those

occasional longer closed times are a hint that these data might be

fractal.

Closed Time Histograms
potassium channel in the

corneal endothelium

Number
of
closed
Times
per
Time
Bin in
the
Record

Liebovitch et al. 1987 Math. Biosci. 84:37-68

Closed Time in ms
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Here is another histogram of the closed times (in ms) of that same ion

channel.  This recording was made at a little slower time resolution and

so longer closed times were recorded.  The PDF is mostly a straight line

on this log (number) versus time (t) plot, but with an occasional longer

closed time.

Closed Time Histograms
potassium channel in the

corneal endothelium

Number
of
closed
Times
per
Time
Bin in
the
Record

Liebovitch et al. 1987 Math. Biosci. 84:37-68

Closed Time in ms
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Here is another histogram of the closed times (in ms) of that same ion

channel.  This recording was made at an even slower time resolution

and so even longer closed times were recorded.  The PDF is mostly a

straight line on this log (number) versus time (t) plot, but with an

occasional longer closed time.

Closed Time in ms

Number
of
closed
Times
per
Time
Bin in
the
Record

Closed Time Histograms
potassium channel in the

corneal endothelium
Liebovitch et al. 1987 Math. Biosci. 84:37-68



Introduction to Fractals

204

Here is another histogram of the closed times (in ms) of that same ion

channel.  This recording was made at a much lower time resolution and

so only the longest closed times were recorded.  The PDF is mostly a

straight line on this log (number) versus time (t) plot, but with an

occasional longer closed time.  The PDF looks similar at different time

resolutions.  The PDF is a measure of the statistics.  So, the statistics is

similar to itself at different time resolutions.  This is statistical self-

similarity in time.

Closed Time Histograms
potassium channel in the

corneal endothelium

Number
of
closed
Times
per
Time
Bin in
the
Record

Liebovitch et al. 1987 Math. Biosci. 84:37-68

Closed Time in ms
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Each of those histograms of the closed times is measured at its own time

resolution, the time width of each bin.  Wouldn’t it be nice to see all

those different time scales at once?  We can’t do that with a histogram,

but we can covert each histogram into its PDF and then combine those

PDFs.  Here is the PDF of all those histograms combined.  Now we can

see that there is a simple relationship (red line) between all the

different closed times.  Thus, there is a relationship between the closed

times as short as a millisecond and those as long as a second.  This

relationship is called a scaling relationship.

Closed Time PDF
potassium channel in the

corneal endothelium
Liebovitch et al. 1987 Math. Biosci. 84:37-68
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Fractals

Scaling

Scaling: The value measured depends upon the resolution used to

make the measurement.
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If we measure the length of the west coast of Britain with a large ruler,

we get a certain value for the length of the coastline.  If we now

measure it again with a smaller ruler, we catch more of the smaller bays

and peninsulas that we missed before, and so the coastline

measurement is longer.  The value we measure for the coastline

depends on the size of the ruler that we use to measure it.

Scaling
  The value measured depends

on the resolution used to do
the measurement.
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Here is a plot of how the length of the west coast of Britain depends

upon the resolution that we use to measure it.  There is no one value

that best describes the length of the west coast of Britain.  It depends

upon the scale (resolution) at which we measure it.  As we measure it at

a finer scale, we include the segments of the smaller bays and

peninsulas, and the coastline is longer.  This is one of the surprising

way in which fractals change the most basic way that we analyze and

understand our data.  There is no one number that best describes the

length of the west coast of Britain.  Instead, what is important is how the

length depends upon the resolution that we use to measure it.  The

more smaller bays and peninsulas, the more the length of the coast

increases when it is measured at a finer resolution, and the steeper the

slope on this plot.  This plot therefore shows that the coast of Britain is

rougher than that of Australia, which is rougher than that of South

Africa, which is rougher than that of a plain circle.

How Long is the Coastline of Britain?
Richardson 1961 The problem of contiguity: An Appendix to Statistics of

Deadly Quarrels General Systems Yearbook  6:139-187
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Iannaccone and his colleagues study how organisms develop in order

to understand and cure cancer in kids.  They mix cells from another

animal into an embryo so that the fate of these marker cells can be

traced out as the animal develops.  The cells that are added have a

different enzyme, which attaches to a radioactive marker that blackens

a photographic film to make a picture.  On the following page are some

of those pictures of the liver.  Look, the added cells are not in one

clump.  They are in islands of all different sizes.

There is no one area that best describes the size of these islands.  The

area measured depends on the resolution used.  This scaling

relationship is a straight line on a plot of log (area) versus log

(resolution).

There is no one perimeter that best describes the size of these islands.

The perimeter measured depends on the resolution used.  This scaling

relationship is also a straight line on a plot of log (perimeter) versus log

(resolution).

This is one of the surprising way in which fractals change the most basic

way that we analyze and understand our data.  There is no one number

that best describes the area or perimeter of these islands.  Instead,

what is important is how the area or perimeter depends upon the

resolution that we use to measure it.
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Genetic Mosaics in the Liver
P. M. Iannaccone. 1990. FASEB J. 4:1508-1512.

Y.-K. Ng and P. M. Iannaccone.  1992.  Devel. Biol. 151:419-430.
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So far, we’ve seen fractal scaling in space.  There are also fractal

scaling in time.  The usual way to measure the switching of an ion

channel is the “kinetic rate constant.”  That tells us the probability that

the ion channel switches between open and closed states.  But the ion

channel must be closed (or open) long enough for us to see it as closed

(or open).  A more appropriate measure is the probability that the ion

channel switches between open and closed states, given that it has

already remained in a state for a certain amount of time.  That certain

amount of time defines the time resolution at which we measure the

switching probability.  We called that probability the “effective kinetic

rate constant” (keff),

keff = Pr (T=t, t+Δt | T > teff) / Δt,    [5.1]

which is the probability (Pr) for the ion channel to open (or close)

during the time interval T = (t, t+Δt), given that it has already remained

closed (or open) for a time T ≥ teff.  In the branch of statistics called

renewal theory, keff is called the “age specific failure rate,” for

example, the probability that a light bulb fails in the next second given

it has already burned for teff hours.  In the branch of statistics used in

epidemiology and insurance, keff is called the “survival rate,” for

example, the probability that a patient dies of cancer this year, if they

have already had cancer for teff years.
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Kinetic Rate Constant:
k = Prob. to  change states in the next dt.

Effective Kinetic Rate Constant:
keff = Prob. to  change states in the next dt,

given that we have already remained
in the state for a time keff.

k      =  Pr ( T=t, t+dt  |  T > t     ) / dteff eff

age-specific failure rate

=  – d
dt
ln P(t)

P(t) = cumulative dwell time distribution

Fractal Kinetics
Liebovitch et al.  1987  Math. Biosci. 84:37-68.
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We measured the open and closed times for an ion channel in the cells

in the cornea, the clear part in the front of the eye that you look through

to see these words.  The effective kinetic rate constant is a straight line

on a plot of log (effective kinetic rate constant) versus log (effective

time used to measure it).  This is a fractal scaling relationship in time.

The faster we could look, the briefer open and closed times we would

see.

70 pS K+ Channel
Corneal Endothelium

Liebovitch et al.  1987  Math. Biosci. 84:37-68.

effk    in  Hz

effective time scale
teff   in  msec

effective
kinetic
rate

constant
100

1000

10

1
1 10 100 1000

keff = A teff
1-D  
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Fractals have given us a new way to analyze data from the patch clamp

measurements of the open and closed times of ion channels.  Instead of

measuring a property (the kinetic rate constant) at one time scale, we

measure how a property (the effective kinetic rate constant) changes

when we measure it at different time scales.  We have been using the

information in this fractal scaling relationship to give us clues about the

structure and motions in ion channel protein.  Specifically, we have

been using the scaling relationship to calculate the energy difference

between the open and closed states of the ion channel protein and how

that energy difference varies in time.  The picture of ion channels

before fractals analysis was that they are firm, sharp, uptight things that

go click, click, click, between a few, very different static states.  The

picture of ion channels after fractal analysis is that they are complex

dynamic things, with many pieces of different size that move over

different time scales, whose new shapes and movements determine

what it’s going to do next.

Fractal Approach

New viewpoint:

Analyze how a property, the effective kinetic

rate constant, keff, depends on the effective

time scale, teff, at which it is measured.

This Scaling Relationship:

We are using this to learn about the structure

and motions in the ion channel protein.

Liebovitch 1989  Math. Biosci. 93:97-115.
Liebovitch and Tóth  1991  Bull. Math. Biol. 53:443-455.

Liebovitch et al.  2001 Methods 24:359-375.
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We have seen examples of scaling relationships for measurements in

space and time.  There can also be scaling relationships for the

correlations between measurements.  Like the scaling relationships for

measurements, the scaling relationship for the correlations between the

measurements is often a power law, that is, a straight line on a

logarithmic-logarithmic plot.  For example, at the left in the figure on

the following page is a measurement in time.  It is self-similar—there

are ever larger fluctuations over ever longer times.  We can measure

the dispersion, the variation in the value, over different windows of

time.  The dispersion is ever larger over ever longer time windows.

The slope of this scaling relationship on a plot of log (dispersion) versus

log(window size) is called the Hurst Exponent, H.  When H = 0.5, the

measurements are not correlated.  When H > 0.5, the measurements

are positively correlated.  This is called persistence.  An increase now

is more likely followed by an increase at all time scales later.  When H

< 0.5, the measurements are negatively correlated.  This is called anti-

persistence.  An increase now is more likely followed by a decrease at

all time scales later.  There are many different ways to find the

correlational scaling relationship.  One method is the Hurst Rescaled

Range Analysis.  Another method is Detrended Fluctuation Analysis.
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Correlations
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On the left, the Hurst rescaled range analysis was used to measure the

correlations in the open and closed times of an ion channel protein

(open circles).  At short times, H = 0.6, and at along times H = 0.9.

These are very persistent correlations.  The correlations disappear

(black circles) when the order of the open and closed times was

randomly shuffled.  This means that there is a long term “memory,”

which gets stronger with time, in how the shape of the ion channel

protein changes in time.  Previous models of ion channels, as shown on

the right, assumed that the channel switched between a few, discrete

shapes, without any memory.  This fractal analysis tells us that ion

channels do not behave that way.  Instead, the fractal analysis has

enabled us to see that there are important, continuous dynamical

processes, with memory, going on inside the ion channel protein.

C8 C7 C6 C5 C4
Ca++ Ca++ Ca++ Ca++

C3 C2 C1
Ca++ Ca++

8-state Markovian Model

“memoryless”
H = 0.5

Data

“a process with memory”

H = 0.6

H = 0.9

Kochetkov, et al.  1999.  J. Biol. Phys.  25:211-222.

Fractal Kinetics
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Here, the detrended fluctuation analysis was used to measure the

correlations in the time between footsteps.  This scaling relationship is

also a power law, a straight line on a logarithmic-logarithmic plot.  The

scaling exponent of that power law is different for the young and the

elderly person.  These studies have given us insight into how the brain

controls coordination and walking, and how that control depends on

age and is changed by disease.

Fractal Walking
Hausdorff et al.  1997.  J. Appl. Physiol.  82:262-269.
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This is the take-home lesson: We are used to thinking that there is one

measurement that best describes a property of an object.  For a fractal

object that extends over many scales, in space or time, a property

depends on the scale at which it is measured.  There is no one

measurement that best describes the object.  The object is best

described by how the property measured depends upon the resolution

at which it is measured.  This relationship is characterized by a

parameter called the fractal dimension.  The fractal dimension can be

calculated from the slope of this logarithmic-logarithmic graph.

one measurement:
not so interesting

slope

Scaling
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Fractals

Statistics

Fractals have some unique statistical properties.  The “average” size

depends on the resolution used to make the measurement.  What is

important is not the average, but how the average depends on the

resolution used to make the measurement.
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Here is a set of numbers; maybe they are the values measured from an

experiment.  I have drawn a circle to represent each number.  The

diameter of the circle is proportional to the magnitude of the number.

Here is a non-fractal set of numbers.  Most of them are about the size of

an average number.  A few are a bit smaller than the average.  A few

are bit larger than the average.

Not Fractal
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Here is the PDF of theoe non-fractal numbers.  The PDF is how many

numbers there are of each size.  The PDF here is called a “Bell Curve,”

a “Gaussian Distribution,” or a “Normal Distribution.”  It’s strange that

someone chose to call this a “normal” distribution.  We are about to see

that much of the world is definitely not like this kind of “normal.”

Not Fractal
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Here is a picture of Gauss on the old 10 Deustche Mark German bill.  He

has now been replaced by the 5 Euro.  You can see his curve and even

the equation for it on this bill!  There are no equations on American

money.  (There is a scientist on American money.  Do you know who it

is?)

Gaussian
Bell Curve
“Normal Distribution”
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Here is a set of numbers from a fractal distribution.  The diameter of

each circle is proportional to the size of the number.  These numbers

could be from the room around you.  Look around your room.  There

are few big things (people and chairs), many medium-sized things

(pens and coins), and a huge number of tiny things (dust and bacteria).

It is not at all like that “Normal” distribution.  Sets of data from many

things in the real world are just like this.  We call this a fractal

distribution of numbers because it has the same statistical properties as

the sizes of the pieces in fractal objects.

Fractal
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Here is the PDF of these fractal numbers.  The PDF is how many

numbers there are of each size.  There are a few big numbers, many

medium sized numbers, and a huge amount of tiny numbers.  The PDF

is a straight line on a plot of log(How Many Numbers; the PDF) versus

log(value of the numbers).

Fractal
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The statistics of a fractal set of numbers is very different from the

statistics of “normal” numbers that they taught you about in Statistics

101.  The statistics you learned in Statistics 101 is only about non-fractal

numbers.  Take the average of a sample of non-fractal numbers.  This is

called the Sample Mean.  As you include ever more data, the sample

means, shown here as µ, get ever closer to one value.  We call that

value the Population Mean, shown here as µpop.  We think that the

population mean is the “real” value of the mean.

Mean

Non - Fractal

More Data

pop
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The statistics of fractal numbers is very different.  Take the average of a

sample of fractal numbers.  This is called the Sample Mean.  As you

include ever more data, the sample means do NOT get ever closer to

one value.  Either the sample means keep increasing OR the sample

means keep decreasing as you include more data.  THERE IS NO

Population Mean.  There is NO one value that best describes the data.

The data extend over a range of many different values.

The Average Depends on the
Amount of Data Analyzed
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Here is why that happens.  Again, here is a set of fractal numbers.  The

diameter of the circles are proportional to the size of the numbers.  As

you include ever more numbers one of two things will happen:

1.  If there is an excess of many small values, the sample means 

get smaller and smaller.

2.  If there is an excess of a few big values, the sample means get

larger and larger

Whether 1 or 2 happens depends on the ratio of the amount of small

numbers to the amount of big numbers.  That ratio is characterized by a

parameter called the Fractal Dimension.

The Average Depends on the
Amount of Data Analyzed

each piece
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Let’s play a non-fractal game of chance.  Toss a coin, if it comes up tails

we win nothing, if it comes up heads we win $1.  The average winnings

are the probability of each outcome times how much we win on that

outcome.  The average winnings are (1/2) x ($0) + (1/2) x ($1) = 50¢.

Let’s go to a fair casino to play this game.  Fair casinos exist only in

math textbooks; “fair” means the bank is willing only to break even and

not make a profit.  We and the casino think it’s fair for us to be charged

50¢ to play one game.  That seems reasonable; half the time we win

nothing, half the time we win $1, so if it costs 50¢ to play each time, on

average, we and the casino will break even.

Ordinary Coin Toss

Toss a coin. If it is tails win
$0, If it is heads win $1.

The average winnings are:
2-1.1  =  0.5

1/2

Non-Fractal
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Here is the PDF of that non-fractal game of chance.  It shows how often

(the PDF on the vertical axis) you will win how much money (the x value

on the horizontal axis) if you play 100 times.  It’s a Bell Curve—a

Gaussian, Normal distribution—just the kind of distribution they taught

you about in Statistics 101.

Ordinary Coin Toss
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Here’s what happens when I played that non-fractal game, over and

over again.  A computer (actually a Macintosh Plus running Microsoft

BASIC!) picked a random number to simulate flipping the coin.  Here,

the average winnings per game is shown after n games.  For a while I

(the Mac) was lucky.  I was winning more than an average 50¢ in each

game.  But, as you might suspect (this is called the Law of Large

Numbers), after a while my luck ran out.  In the long run, I was winning

exactly an average of 50¢ in each game.

Ordinary Coin Toss
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Now, let’s play a fractal game of chance.  This game was invented by

Niklaus Bernoulli who lived in St. Petersburg, Russia, and was

published by his uncle Daniel Bernoulli who lived in Germany, about

350 years ago.  Here, we toss a coin UNTIL it comes up heads.  If it

comes up heads on the first toss, we win $2.  If it comes up tails first,

and then heads on the second toss, we win $4.  If it comes up tails twice,

and then heads on the third toss, we win $8.  And so on.

The average winnings are the probability of each outcome times how

much we win on that outcome.  The average winnings are (1/2) × ($2) +

(1/4) × ($4) + (1/8) × ($8) + (1/16) × ($16) + …. = 1 + 1 + 1 + 1 …  = ∞.

We say to the casino, “Half the time we’ll win $2; the median winnings

of this game is $2” because half the time the coin comes up heads on

the first toss and we win $2.  “So, we think it is very fair to put up twice

the median winnings, $4, to play each game”.  To our surprise, the now

angry casino owner says, “No!”  He adds, “The average winnings of this

game are infinite, you must put up more than all the money in the

universe to play this game, even once!”

This game became known as the St. Petersburg Paradox, because we

and the casino cannot agree on the fee to play this game.  It was called

a “paradox” because it was so surprising, and difficult for many people

to believe, that the player and the casino owner could disagree on what

is fair for such a simple game.  This game is well known amongst

mathematicians, which means it’s well known amongst the people who

know it well.  But, because of its unusually mathematical character, it

was not one of the threads of probability theory that was woven into the
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fabric of statistics that became popular in the natural sciences and that

is taught in Statistics 101.  Now, with the popularity of fractals, it is being

rediscovered and its importance in analyzing and understanding real

data increasingly appreciated.

St. Petersburg Game (Niklaus
Bernoulli)

Toss a coin. If it is heads win $2,
if not, keep tossing it until it
falls heads.

If this occurs on the N-th toss
we win $2N.

With probability 2-N we win $2N.

H        $2
TH      $4
TTH    $8
TTTH  $16

The average winnings are:

2-121  +  2-222  +  2-323  +  . . .  =

1      +       1    +       1     +  . . .  = Fractal
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Here is the PDF of that fractal game of chance.  It shows how often (the

PDF on the vertical axis) you will win how much money (the x value on

the horizontal axis).  It’s NOT a Bell Curve, Gaussian, or Normal

distribution.  Most often you win only a small amount, more often you

win a bigger amount, very rarely you win a huge amount.  It is just like

the fractal PDF of the blood vessels in the retina, or any fractal object!  It

is a straight line on a plot of log (How Often) versus log(How Much).

St. Petersburg Game (Niklaus
Bernoulli)



Liebovitch & Shehadeh

235

Here’s what happens when I played that fractal game over and over

again.  Here, the average winnings per game is shown after n games.

The more I played, the more often there was sometimes a lot of tails

before that first head.  When there are a lot of those tails, I won a huge

jackpot.  As more and more of those jackpots happened, the average

winnings per game kept increasing.  There is no average (population

mean) for this game.  The more I played, the more the average kept

changing.  They told you in Statistics 101 that the more data you have,

the closer the sample means are to the population mean.  Not here!

There is no population mean.  The more data we have (the more games

I played) the more the sample means keep changing.  The few

exponentially large wins keep pushing the sample mean up, which is

very different than what you learned in Statistics 101.  Welcome to

fractals.

St. Petersburg Game (Niklaus
Bernoulli)
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Here is a non-fractal object.  It is a checkerboard.  Actually, I’m only

showing you a piece of it; it should really extend forever in each

direction.  Place a circle on it.  Count all the black pixels in that circle,

and divide by the total number of pixels.  That is the average density

within that circle.  The graph shows how that density changes as the

circles get bigger and bigger.  The average density fluctuates a bit;

after all, we are putting a round circle over a square grid.  But, as the

circles get bigger and bigger, the average density gets closer and

closer to 1/2.  This seems reasonable because the checkerboard is 1/2

black and 1/2 white.

Non-Fractal

Log avg
density within

radius r

Log radius r



Liebovitch & Shehadeh

237

The figure on the next page is a fractal object.  It is called a Diffusion

Limited Aggregation (DLA).  It is statistically self-similar.  It has little

spaces between its little arms, medium spaces between its medium-

sized arms, and large spaces between its large arms.  We’re only

showing you a piece of it, but it should also really extend forever in

each direction.  Place a circle on it.  Count all the black pixels in that

circle, and divide by the total number of pixels.  That gives the average

density within that circle.  The graph shows how that density changes as

the circles get bigger and bigger.  As the circles get bigger we catch

more of the ever larger spaces between the arms, and so the density

gets smaller.  As the circles get ever bigger, the density gets ever

smaller.  There is no one density that describes this object.  What’s

more, the local density on a big arm is very high.  The local density

between big arms is very low.  Yet, the same mechanism makes the

arms and the spaces between them.  Based upon our Statistics 101

training, we are used to thinking that when the local average changes,

when there is a difference in the mean value between an experiment

and a control, or between now and then, that the system must have

changed.  Here, fractals, with infinite variance, have moments, such as

the mean, that can be very different in space and time or between

experiments and controls, even though the basic process has not

changed at all!
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Fractal

Log avg
density within radius r

Log radius r

.5

-1.0

-2.0

-1.5

.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.00
-2.5

0

Meakin 1986 In On Growthand Form: Fractal and Non-Fractal Patterns in
Physics Ed. Stanley & Ostrowsky, Martinus Nijoff Pub., pp. 111-135
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Here is yet another example of fractal data.  Data from many

experiments have fractal properties.  Here are the action potentials, the

little electrical sparks, that encode information sent down the nerves in

your body.  Teich et al. measured them in the auditory nerve, which

brings information about sounds from your ear to your brain.

Electrical Activity of Auditory Nerve
Cells

Teich, Jonson, Kumar, and Turcott 1990 Hearing Res. 46:41-52

voltage

time

action potentials
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They divided the time record into windows and counted the number of

action potentials in each window.  Here, two in the first window, six in

the second, and so on.  The “firing rate” is the number of action

potentials in each window, divided by the time duration of that window.

Electrical Activity of Auditory Nerve
Cells

Teich, Jonson, Kumar, and Turcott 1990 Hearing Res. 46:41-52

2

Count the number of action potentials in
each window:

6 3 1 5 1

Firing Rate = 2, 6, 3, 1, 5,1

Divide the record into time windows:
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Here they made the windows twice as long in time, and counted the

number of action potentials in each window.  Again, the “firing rate” is

the number of action potentials in each window, divided by the time

duration of that window.

Electrical Activity of Auditory Nerve
Cells

Teich, Johnson, Kumar, and Turcott 1990 Hearing
Res. 46:41-52

Repeat for different lengths of
time windows:

8 4 6

Firing Rate = 8, 4, 6
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In Statistics 101 they taught you that as you collect more data, the

fluctuations average out.  You were taught to expect that the fluctuations

in the firing rate should be less as the time windows get longer.  But

look here—the variations don’t change much as the time windows go

from 0.5 s to 5.0 s to 50.0 s!  [Actually, the real deal here is that the

variance of the fluctuations falls much slower than 1/sqrt(n)].  You

include more data, but you don’t get any closer to the real firing rate.

There is no one single value, like a population mean, that best

describes the firing rate.  The increase in variation at longer time

windows is real.  It represents correlations in the action potentials

which may tell how information is encoded in the timing of the action

potentials.

Electrical Activity of Auditory Nerve Cells
Teich, Jonson, Kumar, and Turcott 1990 Hearing Res. 46:41-52

0

The
variation
in the
firing rate
does not
decrease
at longer
time
windows.
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Fractals

Power Law PDFs

PDFs: Fractal data have a characteristic PDF form called a Power Law.
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These are electrocardiograms (EKGs) that record the voltage from the

heart.  The first chart strip shows a normal heart.  The second chart strip

shows a heart that is beating dangerously fast (ventricular tachycardia).

This is dangerous because it can lead to ventricular fibrillation, where

the heart no longer contracts in a regular way and can result in death in

3 minutes.

Heart Rhythms
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To prevent ventricular tachycardia from leading to fibrillation and

death, a small device called a “cardioverter defibrillator” can be

placed just under the skin in the chest.  Small wires are snaked around

through the blood vessels into the heart.  It listens, electronically,

carefully to the heartbeat.  When the heart beats 3 times its normal rate

for 5 beats, it sends an electrical shock strong enough to kick the heart

back into a normal rhythm.  But, it’s also a computer, with a small

memory.  It can remember when it is triggered.  Back in the hospital, a

small coil is placed on the patient’s chest.  Over this radio link, the

cardioverter defibrillator can play back when it was triggered.  We

have been analyzing the times between when the device was

triggered.  Just to be clear, we are not analyzing the time between

heartbeats.  We are analyzing the durations between consecutive

triggerings of the cardioverter defibrillator.

Inter-event Times

Episodes of Ventricular
Tachycardia (v-tach)

t1 t2 t3 t4 t5

time ->

Cardioverter Defibrillator

Liebovitch et al. 1999 Phys. Rev. E59:3312-3319.
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Here, from one patient, is the relative frequency, the number of

occurrences of a given duration between the defibrillator events.  The

PDF is proportional to the relative frequency.  The plot is a straight line

on a log (how often) versus log (time between events) scale.  This is

fractal scaling.  The events of rapid heart rate happen with a fractal

timing.

Interval (in days)

Relative
Frequency

10 310 210 110 010 -110 -210 -310 -4
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

Relative Frequency =
(9.8581) Interval-1.0988

Patient #33
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Here again, from another patient, is the relative frequency.  The PDF is

proportional to the relative frequency.  The plot is also a straight line on

a log (how often) versus log(time between events) scale.  This is also

fractal scaling.  The events of rapid heart rate for this patient also

happen with a fractal timing.

Interval (in days)

Relative
Frequency

Relative Frequency =
(3.2545) Interval-1.3664

10 310 210 110 010 -110 -210 -310 -4
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

10 3

10 4

10 5

10 6

Patient #53
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In fact, for many patients events of ventricular tachycardia happen with

a fractal pattern.  Most of the times between events are short,

sometimes they are longer, and very rarely they are very long, which is

typical of fractals.  There is no average time between events.  If you

measured the “average rate” of events you would get a different

answer if you measured them over a day or a week or a year.  There is

no one number that best describes the time between these events.  The

time between events happens over many different time scales.  We are

working on other ways, fractal ways, of characterizing these times to

assess the status of patients and the effectiveness of medical therapies.

For example, we are seeing whether the slope or intercept of these

PDFs is a good indicator of diagnosis or treatment outcome.

6 Patients
Liebovitch et al. 1999 Phys. Rev. E59:3312-3319.
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We are also analyzing the times at which different e-mail viruses arrive

at the gateway into an internet service provider.  On the picture on the

following page are the events—the arrival times of e-mail viruses.  We

are looking at the duration of times between the arrival of each virus.

We have studied 4 viruses:

1.  AnnaKournikova doesn’t have a picture of her, it’s a file that 

you wouldn’t want to open.

2.  Magistr can erase sectors on your hard disk or your 

cmos/bios.  If you don’t know what the cmos/bios is, you don’t 

want us to tell you what happens if it gets erased.

3.  Klez puts together messages by joining fragments of phrases 

that it contains.

4.  Sircam tempts you to open and execute its attached file.

Much is known about the structure of the Internet.  Less is known about

the dynamics of the Internet.  The arrival times of these viruses depend

on both the structure and dynamics of the Internet.  We are hoping that

our study of these arrival times will tell us how the structure interacts

with the dynamics if the Internet.
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Inter-arrival Times of E-mail Viruses

t1 t2 t3 t4 t5

time ->

Liebovitch and Schwartz 2003 Phys. Rev. E68:017101.

AnnaKournikova
"Hi: Check This!” AnnaKournikova.jpg vbs.

Magistr
Subject, body, attachment from other files: erase disk, cmos/bios.

Klez
E-mail from its own phrases: infect by just viewing in Outlook Express.

Sircam
“I send you this file in order to have your advice.”
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We have data, unfortunately, from many, many virus events.  Here are

the PDFs from AnnaKournikova and Magistr, how often the different

times between the arrivals occurred.  These plots are straight lines on a

log (how often) versus log(time between arrivals) scale.  These are

fractal scalings.  The arrival of these viruses happens with a fractal

timing.

E-mail Viruses

10 110 010 -110 -210 -3
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Interval

PDF
AnnaKournikova

10 110 010 -110 -210 -3
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Interval

PDF
Magistr.b

d=1.51 d=3.19

20,884 viruses 153,519 viruses

Liebovitch and Schwartz 2003 Phys. Rev. E68:017101.



Introduction to Fractals

252

Here are the PDFs from Klez and Sircam, how often the different times

between the arrivals occurred.  These plots are also straight lines on a

log (How Often) versus log(time between arrivals) scale.  These are

also fractal scalings.  The arrival of these viruses also happens with a

fractal timing.

E-mail Viruses

413,183 viruses 781,626 viruses

10 110 010 -110 -210 -3
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Interval

PDF
Klez.e

10 110 010 -110 -210 -3
10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

10 2

Interval

PDF
Sircam.a

d=2.40 d=2.96

Liebovitch and Schwartz 2003 Phys. Rev. E68:017101.
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We made a simple model to study how the structure and the dynamics

of the Internet are interrelated.

Structure:  There are networks of computers of different sizes.

Dynamics:  When each network sends out viruses, the number 

and time between them depend on the size of the network.

Model: Structure + Dynamics

Structure

Dynamics

K n(k) = k-a  units of size k

e(k) = kb viruses

t(k) = k-c apart

In one burst:

time

Liebovitch and Schwartz 2003 Phys. Rev. E68:017101.
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There were some interesting results from these models.  First, the

model predicts a power law distribution in the PDF of the times

between the arrival of the viruses.  Second, the exponent of that power

law tells us whether relatively more viruses are sent from the small

number of larger networks or the larger number of small networks.

Model: Results

The relative number of viruses from all units of size k  ~  kb-a

(b-a) = c (d-1)

When d > 1: (b-a) > 0,
relatively more viruses come from the larger units,
as seen in the data.

When d < 1: (b-a) < 0,
relatively more viruses come from the smaller units.

d = 1 - a/c + b/c

PDF(t) = t-d

where d = 1 - a/c + b/c
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Fractals

Methods for Determining
the PDFs

The PDF is an important tool in determining if experimental data have

fractal properties.  A power law PDF is characteristic of fractal

behavior.  The standard method for evaluating the PDF is to make a

histogram of the data.  That method is very good at determining the

PDF when the data are not fractal.  It is less good at determining the

PDF when the data are fractal.  Next, we’ll see other ways of

determining the PDF, and how they compare to the histogram method.
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It’s not so easy to make a good PDF from the histogram of How Many

events there are in each time bin.  If we choose the bins narrow, we get

good resolution for the small events.  But, at long times, because the

bins are so narrow, we may see only 1 or 2 events, or even 0 events, in

some of those bins.  If we try to fix this by making the bins wider, we do

get more events in the bins at longer times.  But, at short times, we now

have poor resolution.

Determining the PDF
from a Histogram

Bins dt Small
Good at small t.
BAD at large t.

t

PDF

Bins dt Large
BAD at small t.
Good at large t.

t

PDF
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We figured out a nice algorithm to get a better PDF.  Narrow bins are

good at short times.  Wide bins are good at long times.  So, we make

histograms of different bin sizes.  But, we cannot combine histograms of

different bin sizes.  However, we can compute the PDF from each

histogram and then combine the PDFs.  For each histogram, the PDF(t)

is N(t), the number of values in the bin that covers (t, t+dt), divided by

Nt, the total number of values in that histogram, divided by dt, the width

of the bins in that histogram.  The histograms with narrow bins give us

good resolution in the PDF at short times.  The histograms with wide

bins give us good values in the PDF at long times.  We’ve found that this

method yields accurate and reliable PDFs for tails of many different

kinds of distributions.  See Liebovitch et al. 1999 for details.

Determining the PDF
Liebovitch et al. 1999 Phys. Rev. E59:3312-3319.

Solution:
Make ONE PDF
From SEVERAL Histograms of DIFFERENT Bin Size

Choose dt = 1, 2, 4, 8, 16 … seconds

PDF = N(t)
Ntotdt

N(t) = number in [t, t+dt]

Ntot = total number in each histogram
dt = bin size
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Here, PDFs were measured from a set of fractal data.  The red boxes

indicate the PDF made in the usual way from one histogram.  You can

see where there are only 1 or 2 events in the largest bins.  The black

boxes indicate the PDF generated from the same data using the new

multi-histogram method to make the PDF.  Pretty impressive difference.

New multi-histogram

Standard fixed dt

10 410 310210 110 010 -110 -2
10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

10 1

Values

PDF

Determining the PDF



Liebovitch & Shehadeh

259

Fractals

Summary
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SELF-SIMILARITY

Definition: Pieces of an object in space, or parts of a process in time, are

smaller versions of the whole object or process.

Examples: The Sierpinski Triangle in space and the times between the

arrival of e-mail viruses.

Methods: A power law distribution of the PDF of the pieces of an object

in space or the parts of a process in time is indicative of fractal

behavior.

Importance for data analysis:  There is no single scale, in space or time,

that characterizes such data that extends over many scales.

Summary of Fractal PropertiesSummary of Fractal Properties

Self-Similarity
Pieces resemble the

whole.
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SCALING

Definition: The value measured for a property depends on the scale, in

space or time, over which it is measured.

Examples: The length of the west coast of Britain and the closed times of

ion channel proteins in the cell membrane.

Methods: A power law scaling of the measured values or the correlation

between the measured values is indicative of fractal scaling behavior.

Importance for data analysis:  Since no one value properly characterizes

the data, what is important is how the value measured depends on the

resolution used to make the measurement.

Summary of Fractal PropertiesSummary of Fractal Properties

Scaling
  The value measured

depends on the
resolution.
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STATISTICS

Definition: The PDF is a power law.  The population mean and

population standard deviation don’t exist.

Examples: The winnings in the St. Petersburg game and the variation in

the times between action potentials recorded from auditory nerve cells

in the ear.

Methods: A power law distribution of the PDF or a power law scaling

relationship for the moments is indicative of fractal behavior.

Importance for data analysis:  When the mean depends on the spatial

scale, the temporal scale, or how much data we analyze, then the mean

is meaningless.  What is meaningful is how the sample means, or

another scaling property, depend on the spatial scale, the temporal

scale, or how much data we analyze, which is described by the fractal

dimension.

Summary of Fractal PropertiesSummary of Fractal Properties

Statistical Properties
  Moments may be zero

or infinite.
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Probability theory started from solving gambling problems about 400

years ago.  About 200 years ago, those results were used to develop

basic statistics.  Most of the statistical tests we use were developed less

than 100 years ago.  We show you this to emphasize that statistics is

NOT a dead science, although it’s often presented like that in Statistics

101.  It has changed a lot.  It is still changing.  It will change even more

in the future.  The statistical properties of fractals are examples of new

ideas that are now being incorporated into and are changing statistics.

400 years ago:
Gambling Problems     Probability Theory

200 years ago:
Statistics     How we do experiments.

100 years ago:
Student’s t-test, F-test, ANOVA

Now:
Still changing

Statistics is NOT a dead science.
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The take-home lesson here is not that fractals some arcane super-

sophisticated mathematical tool that only needs to be used in some

strange circumstance.  Fractals change the most basic way we look at

experimental data.  They allow us to analyze and make sense out of the

huge amount of real data that “just ain’t a bell curve.”  The most

common use of mathematics and statistics in all science is means ±

s.e.m.  Fractals tell us that if the data are fractal, those means are

meaningless!  That’s a pretty basic change in the simplest way we

handle data.  That’s what revolutions in science are about—not about

changing the complex stuff, but about changing the simplest stuff.  The

stuff that we were taught so firmly that we never thought it would

change.

Fractals CHANGE the most basic ways we
analyze and understand experimental data.

Fractals

Measurements over many scales.

What is real is not one number, but how the measured

values change with the scale at which they are measured

(fractal dimension).

No Bell Curves
No Moments

No mean ± s.e.m.
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TO LEARN MORE ABOUT FRACTALS

1. A book called Fractals and Chaos Simplified for the Life Sciences

(Liebovitch, 1998).  This book consists of facing pages, where the left

page is text and the right page is a picture.  It leads you, one concept at

a time, through the material.

2. A CD-ROM of curricula materials for a mathematics course for

college students who never liked and never did well in math (funded,

in part, by the National Science Foundation, Division of Undergraduate

Education).  The materials emphasize what mathematics is, how

mathematicians do mathematics, and how mathematics is used in

science.  We’re almost finished with it and would be happy to send you

a free demo (contact information is on the first page of this chapter).
References:References:

Fractals and Chaos and

Simplified for the Life

Sciences

Larry S. Liebovitch

Oxford Univ. Press, 1998

The Mathematics and

Science of Fractals

Larry S. Liebovitch and

Lina Shehadeh
www.ccs.fau.edu/~liebovitch/

larry.html

CD ROM

NSF
DUE-9752226
DUE-9980715 
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We have concentrated here (and in the references noted on the

previous page) on providing an introduction to fractal concepts, their

importance, and what can be learned from them.  Here are some books

that describe the mathematical details of these methods and give

examples of how scientists have used them.

Technical Details

J. Feder. 1988.  Fractals. Plenum Press.t.

J. B. Bassingthwaighte, L. S. Liebovitch and B. J. West.
1994.  Fractal Physiology. Oxford University Press.

P. M. Iannaccone and M. Khokha.  1996.  Fractal
Geometry in Biological Systems. CRC Press.

A. Bunde and S. Havlin, eds.  1994.  Fractals in
Science. Springer-Verlag.
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