National Science Foundation

Directorate for Education & Human Resources
Research on Learning in Formal and Informal Settings

Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):

November 12, 2009

REVISION NOTES

Under the strand of Contextual Research Topics (part B), two sections from the former solicitation, Policy Studies and Evaluation Studies, have been combined and renamed Education Policy Studies and Research on National Initiatives in STEM. The text of this section provides further detail, as well as specific examples that demonstrate the type of research problems the program would welcome.

The solicitation now includes a new proposal type, Pathways, which provides opportunities for exploratory work to pilot new research questions and approaches and to conduct feasibility studies prior to submitting a full proposal.

The maximum award sizes for Empirical and Large Empirical projects have been increased to $1,500,000 and $2,500,000, respectively.

Please be advised that the NSF Proposal & Award Policies & Procedures Guide (PAPPG) includes revised guidelines to implement the mentoring provisions of the America COMPETES Act (ACA) (Pub. L. No. 110-69, Aug. 9, 2007.) As specified in the ACA, each proposal that requests funding to support postdoctoral researchers must include a description of the mentoring activities that will be provided for such individuals. Proposals that do not comply with this requirement will be returned without review (see the PAPP Guide Part I: Grant Proposal Guide Chapter II for further information about the implementation of this new requirement)

As announced on May 21, 2009, proposers must prepare and submit proposals to the National Science Foundation (NSF) using the NSF FastLane system at http://www.fastlane.nsf.gov/. This approach is being taken to support efficient Grants.gov operations during this busy workload period and in response to OMB direction guidance issued March 9, 2009. NSF will continue to post information about available funding opportunities to Grants.gov FIND and will continue to collaborate with institutions who have invested in system-to-system submission functionality as their preferred proposal submission method. NSF remains committed to the long-standing goal of streamlined grants processing and plans to provide a web services interface for those institutions that want to use their existing grants management systems to directly submit proposals to NSF.

SUMMARY OF PROGRAM REQUIREMENTS

General Information

Program Title:
Research and Evaluation on Education in Science and Engineering (REESE)

Synopsis of Program:
The Research and Evaluation on Education in Science and Engineering (REESE) program seeks to advance research at the frontiers of STEM learning, education, and evaluation, and to provide the foundational knowledge necessary to improve STEM teaching and learning at all educational levels and in all settings. This solicitation calls for four types of proposals—Pathways, Knowledge Diffusion, Empirical Research, and Large Empirical Research.

The goals of the REESE program are: (1) to catalyze discovery and innovation at the frontiers of STEM learning, education, and evaluation; (2) to stimulate the field to produce high quality and robust research results through the
progress of theory, method, and human resources; and (3) to coordinate and transform advances in education, learning research, and evaluation. REESE pursues its mission by developing an interdisciplinary research portfolio focusing on core scientific questions about STEM learning in current and emerging learning contexts, both formal and informal, from childhood through adulthood, and from before school through to graduate school and beyond into the workforce. REESE places particular importance upon the involvement of young investigators in the projects, at doctoral, postdoctoral, and early career stages, as well as the involvement of STEM disciplinary experts. In addition, research questions related to educational research methodology and evaluation are central to the REESE activity.

Cognizant Program Officer(s):

- Address questions to REESE program officers, telephone: (703)292-8650, email: DRLREESE@nsf.gov

Applicable Catalog of Federal Domestic Assistance (CFDA) Number(s):

- 47.076 --- Education and Human Resources

Award Information

Anticipated Type of Award: Standard Grant or Continuing Grant

Estimated Number of Awards: 30 to 50 awards for the competition in FY 2010, pending availability of funds. Approximately 5-10 Pathways, 5-10 Knowledge Diffusion, 10-15 Empirical, and 5-10 Large Empirical awards will be funded, depending upon availability of funds.

Anticipated Funding Amount: $27,000,000 for awards in FY 2010, pending availability of funds. The maximum award for Pathways projects is $250,000 with duration of up to two years. The maximum award for Knowledge Diffusion projects is $250,000 with duration of up to two years. The maximum award for Empirical Research projects is $1,500,000 with duration of up to three years. The maximum award for Large Empirical Research projects is $2,500,000 with duration of up to five years.

Eligibility Information

Organization Limit: None Specified

PI Limit: None Specified

Limit on Number of Proposals per Organization: None Specified

Limit on Number of Proposals per PI: None Specified

Proposal Preparation and Submission Instructions

A. Proposal Preparation Instructions

- **Letters of Intent:** Not Applicable
- **Preliminary Proposal Submission:** Not Applicable
- **Full Proposal Preparation Instructions:** This solicitation contains information that supplements the standard NSF Proposal and Award Policies and Procedures Guide, Part I: Grant Proposal Guide (GPG) proposal preparation guidelines. Please see the full text of this solicitation for further information

B. Budgetary Information

- **Cost Sharing Requirements:** Cost Sharing is not required under this solicitation.
- **Indirect Cost (F&A) Limitations:** Not Applicable
- **Other Budgetary Limitations:** Not Applicable

C. Due Dates

- **Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):**

 November 12, 2009

Proposal Review Information Criteria

Merit Review Criteria: National Science Board approved criteria apply.

Award Administration Information
TABLE OF CONTENTS

Summary of Program Requirements

I. Introduction

II. Program Description

III. Award Information

IV. Eligibility Information

V. Proposal Preparation and Submission Instructions
 A. Proposal Preparation Instructions
 B. Budgetary Information
 C. Due Dates
 D. FastLane Requirements

VI. NSF Proposal Processing and Review Procedures
 A. NSF Merit Review Criteria
 B. Review and Selection Process

VII. Award Administration Information
 A. Notification of the Award
 B. Award Conditions
 C. Reporting Requirements

VIII. Agency Contacts

IX. Other Information

I. INTRODUCTION

About the National Science Foundation and the Directorate for Education and Human Resources

The National Science Foundation (NSF) is charged with promoting the vitality of the nation's science, technology, engineering and mathematics (STEM) research and education enterprises. As part of this mission, the Directorate for Education and Human Resources (EHR) has primary responsibility for providing national and research-based leadership in STEM education. EHR emphasizes six themes in fulfilling this responsibility:

1. Furthering public understanding of science and advancing STEM literacy;
2. Broadening participation to improve workforce development;
3. Promoting learning through research and evaluation;
4. Promoting cyberlearning strategies to enhance STEM education;
5. Enriching the education of STEM teachers; and
6. Preparing scientists and engineers for tomorrow.

To address these themes, the Directorate sponsors programs in the Divisions of Research on Learning in Formal and Informal Settings (DRL), Undergraduate Education (DUE), Graduate Education (DGE), and Human Resource Development (HRD). The REESE program is managed in DRL.

About the Division of Research on Learning in Formal and Informal Settings

DRL invests in projects to enhance STEM learning for people of all ages. It promotes innovative and transformative research, development, and evaluation of learning and teaching in all STEM disciplines. The Division seeks to support both early work on promising innovations and large-scale testing and implementation of proven educational innovations. In doing so, it challenges the field to create the ideas, resources, and human capacity to bring about needed transformation of STEM education for the 21st century. Integration of cutting-edge STEM content and the engagement of STEM researchers are encouraged in all DRL initiatives. In the larger context of Federal support for education research and evaluation, DRL’s role is to be a catalyst for change—advancing theory, method, measurement, development, evaluation, and application in STEM education.

The Division’s programs offer a set of complementary approaches for advancing research, development, and field-based improvements.

- The Research and Evaluation on Education in Science and Engineering (REESE) program advances research at the frontiers of STEM learning, education, and evaluation, and provides foundational knowledge to improve STEM teaching and learning at all educational levels and in all settings.
- The Discovery Research K-12 (DR K-12) program enables significant advances in K-12 student and teacher learning of the STEM disciplines through development and study of innovative resources, models, and technologies for use by students, teachers, administrators and policy-makers.
- The Informal Science Education (ISE) program invests in projects that promote lifelong learning of STEM by the public, advance the knowledge and practice of informal STEM education, and expand professional capacity to improve informal STEM education.
The Innovative Technology Experiences for Students and Teachers (ITEST) program invests in projects designed to enhance participation in the U.S. STEM workforce through the design, implementation, scale-up, and testing of technology-intensive educational experiences for students and teachers, and through research studies about issues related to STEM workforce participation.

Each of these programs is intended to improve the national capacity for STEM teaching and learning. They are central to NSF’s strategic goals of Learning and Discovery, helping to cultivate a world-class and broadly inclusive STEM workforce, expanding the scientific literacy of all citizens, and promoting research that advances the frontiers of knowledge.

All research and development activities within DRL aim at generating knowledge and transforming practice in STEM education. DRL’s programs are designed to complement each other within a cycle of research and development (see Figure 1) that forms the conceptual framework for its programs (adapted from RAND, 2003, American Statistical Association, 2007, NSF, 2005). All DRL programs are concerned with all five components of the cycle. Work in each part of the cycle forms a vital and compelling foundation for transition to the next part of the cycle.

Figure 1: Cycle of Research and Development

The major distinction between the DR K-12 and REESE programs is that DR K-12 projects focus on development and study of specific resources, models and technologies designed to improve STEM education in PreK-12 schools, while REESE projects focus primarily on building theory and knowledge about STEM education across learning contexts and ages. The outcomes of DR K-12 projects will be STEM education innovations and design principles that are informed by research and tested in practice. The primary outcomes of REESE projects will be research findings, methods, and theoretical perspectives about STEM education. Proposers who are in doubt about the appropriate program for funding of their work should consult an NSF Program Officer with either program.

II. PROGRAM DESCRIPTION

The goals of the REESE program are: (1) to catalyze discovery and innovation at the frontiers of STEM learning, education, and evaluation; (2) to stimulate the field to produce high quality and robust research results through the progress of theory, method, and human resources; and (3) to coordinate and transform advances in education, learning research, and evaluation efforts. REESE pursues its mission by developing an interdisciplinary research portfolio focusing on core scientific questions of STEM learning in current and emerging learning contexts, both formal and informal, from childhood through adulthood, and from before school through to graduate school and beyond into the workforce. REESE places particular importance upon the involvement of young investigators in the projects, at doctoral, postdoctoral, and early career stages, as well as the involvement of STEM disciplinary experts. In addition, research questions related to educational research methodology and evaluation are central to the REESE activity.

This solicitation calls for four types of proposals: Pathways, Knowledge Diffusion, Empirical, and Large Empirical. All REESE proposals, regardless of their type, must be responsive to one of two broad topical strands, Emerging Research or Contextual Research, as described below.

A. Research on Emerging Topics in STEM Education

Emerging research that broadens knowledge in the field often challenges existing assumptions about learning and teaching within or across STEM disciplines. The REESE program is committed to supporting transformative education research in STEM education through novel answers to foundational questions about what STEM concepts can be learned, by whom, at what age, and how and where that can happen.

REESE seeks proposals that have the potential to transform existing fields of STEM learning and education through pioneering research that defies disciplinary boundaries in pursuit of emerging knowledge in STEM learning. Through Emerging Research projects, REESE challenges scholarly communities to put forward groundbreaking ideas, concepts, theories, modes of research and development, and the measurement and methodological technologies needed to understand and measure the impact of the proposed innovations. Emerging research is by nature uncertain, so high-risk/high-gain proposals and potentially transformative ideas are encouraged.

Emerging Research proposals will seek to contribute to far-reaching and longer-term developments in knowledge and theory. They may be especially oriented toward the design, develop, and test components of the cycle shown in Figure 1. Emerging Research proposals are limited to one or more of the following areas of inquiry:

1. **Neural basis of STEM learning**
Fundamental aspects of STEM learning are beginning to be understood in terms of neural processes and biological context. Discoveries in these and other areas are influencing our understanding of behavior, cognition, and the nature of human learning. In order to gain traction on fundamental questions of mind and brain as related to STEM learning, REESE supports innovative combinations of theory, empirical techniques, and levels of analysis from a wide range of disciplines. An important aspect of these activities is to build capacity in neuroscience related to complex human learning and education, and to identify trajectories by which multidisciplinary research anchored in the biological basis of human learning can inform STEM educational practice. The involvement of researchers familiar with STEM educational practice will be of benefit both in helping to set the cognitive and neuroscientific research agendas in learning as well as in helping to disseminate relevant literatures across disciplines.

It is incumbent upon those submitting proposals to make explicit the implications their work has for current theories of learning and instructional methods, however long-term and indirect they may be. For example, neuroscientific studies of attention or intuition could constrain theories about the learning of specific STEM content or help explain why some misconceptions are robust and difficult to overcome. They could similarly inform the creation of principles of design for the development of instructional materials, informal learning opportunities, or the education of teachers in the STEM fields.

2. **Cognitive processes underlying STEM learning and teaching**

The REESE program encourages proposals that push the boundaries of existing knowledge about the cognitive processes underlying the learning and teaching of complex STEM content, at all age levels and in all learning contexts. The program seeks to foster interdisciplinary collaboration among cognitive scientists, educational researchers, and STEM disciplinary educators, bringing their respective literatures into more systematic and productive contact. For the REESE Program, **interdisciplinarity** means a combination of expertise across disciplines both in and out of traditional education programs, such as STEM education researchers, educational psychologists, cognitive scientists, and ethnographers (this list should not be considered exhaustive). To that end, investigators must make a clear case for how the proposed research has the potential to lead to significant advancements in our understanding of STEM learning and teaching, even if such advancement is by no means assured. In particular, studies must identify the STEM content of focus and argue for its importance. Similarly, assumptions, whether implicit or explicit, about STEM learning must engage relevant theoretical developments and empirical findings, whether in the cognitive science, education research, and/or STEM education literatures.

This is a call for researchers to attempt to make substantial progress on fundamental intellectual and scientific questions about the nature of learning, teaching, and knowing, at all education levels, that bear upon developing expertise in STEM fields. For example, investigators might pursue questions about the role of students’ goals and beliefs about STEM learning as they relate to STEM performance, or they could take advantage of recent developments at the intersection of mathematics and cognitive science that seek to create probabilistic models of reasoning, memory, language, categorization, and learning in complex STEM domains. They might address such problems as whether and which aspects of knowledge of the natural world have early-arising conceptual biases that influence the course of learning throughout the life span, affecting which STEM concepts appear to be commonsense and which seem counterintuitive. By contrast, investigators might address claims about which aspects of understandings of the natural world are relevant to a particular social or linguistic context and how they arise, or how prior opportunities to learn relate to what is developmentally appropriate. Note that, unlike the Developmental and Learning Sciences (DLS) Program in the Directorate for Social, Behavioral, and Economic Sciences (SBE), submissions to the REESE Program must have explicit connection to the teaching or learning of STEM content, though the direct applications may be distal.

3. **Measurement, modeling, and methods for research and evaluation**

The REESE program is committed to advancing the state of the art in STEM education research and evaluation by supporting proposals to improve or develop new qualitative and quantitative methods, measures, tools, and analytic techniques. Investigators studying problems in this area must make a clear case for the technical, analytic, methodological, or measurement problem to be addressed, and plans for how the proposed methods will be developed. An argument should be included about why the particular methodological advance will be applicable in one or more specific STEM education content areas.

For instance, some methodologists are experimenting with hybrid forms of qualitative and quantitative techniques based in game and risk theory within more traditional experimental designs, for application to STEM education problems. Further, continued work is needed in methods of combining and aggregating different forms of evidence within a single design or across multiple studies through such methods as meta-analysis or synthetic techniques, mixed qualitative-quantitative techniques, and modeling data derived from qualitatively diverse perspectives in causal logic.

In addition, the STEM education research and evaluation communities remain in need of appropriate and robust ways to measure and model constructs at higher programmatic and organizational levels and within nested logic structures. Research is encouraged that seeks ways that measurement and modeling techniques can become more intellectually responsive to education and learning theory and more robust to modeling assumptions, so that they can be applied to STEM learning and education questions.

In the area of modeling and related developments for data mining, sharing, and manipulation, some fields of science and engineering are tapping creative solutions to representation. These solutions emerge from large-scale, distributed data and other authentic resources now becoming available due to advances in computing power, pattern recognition, graphical imagining and representation, and other web-based venues and technologies. Techniques such as these might be extended and adapted for use in modeling learning trajectories, making inferences about particular large-scale interventions, or in diffusion of innovations at various levels educational or informal learning systems. REESE is interested in proposals to adapt and advance these
techniques for application to STEM learning settings.

4. Cyberlearning and teaching

Ongoing investments by the NSF to advance our nation’s cyberinfrastructure have provided the foundation from which to re-conceptualize traditional models of teaching and learning in school-based and informal learning environments. The re-conceptualization of how, when, and where learning can take place has strong implications for how to effectively educate 21st century learners who are already digital natives.

Cyberlearning can be defined as learning that is mediated by networked computing and communications technologies. Cyberlearning is learning that occurs through one or more types of cyber-enabled networks and communications technologies, and may comprise an entire learning experience (NSF Task Force on Cyberlearning, 2008). Cyberlearning is potentially transformative in that it may provide learning experiences that may highly motivate STEM learning or enable the learning of new STEM content, or allow for teaching that reaches new levels of effectiveness. As a result, cyberlearning has the potential to enrich and enhance the learning process throughout the school years and into adulthood, as a lifelong chronicle—potentially improving the effectiveness with which knowledge is gained over an entire life span.

REESE invites proposals for research to test claims that cyberlearning promotes significantly different ways of learning STEM content, or allows for the learning of different STEM content. Research is needed that will enable the potentially transformational promise of technology to be realized as a means to improve educational opportunity. Accordingly, REESE welcomes proposals that study learning across the entire cyberlearning landscape. REESE encourages proposals that investigate the cognitive implications of cyberlearning: study the teaching and learning of STEM content through an array of cyber-enabled technologies at all age levels; explore the intersection of human-computer interactions; study types of STEM content that can be taught, learned, and assessed through cyberlearning technologies and the conditions under which these occur; investigate the effects of STEM learning through the use of (1) visual technologies, such as visualizations, simulations, and games, (2) types of virtual environments, and (3) virtual humans; and, study adaptive learning technologies, cognitive tutors, and the highly social networks of virtual organizations.

REESE supports research on cyberlearning of STEM content in school-based classrooms, in a variety of out-of-school environments, and in virtual environments. Proposals should make a clear case for how the proposed research represents the potential for making a significant advance in cyberlearning.

B. Contextual Research Topics in STEM Education

The Contextual Research strand encourages proposals that address central problems and topics in STEM education, teaching and learning, and evaluation, for all age groups and in all settings—problems that must be addressed in order for substantial progress to be made in educating the STEM workforce of tomorrow and ensuring the STEM literacy of all. Research in this area is often multidisciplinary, drawing on the expertise of STEM content experts, STEM education researchers, cognitive and social scientists, computer scientists, and potentially those from other areas of praxis and scholarship. It may also draw on international research trends and theoretical perspectives.

In contrast to the Emerging Research strand, which is limited to specified topics, the Contextual Research strand of REESE offers two broad areas for transformative solutions to persistent problems: research on teaching and learning in formal and informal settings, and education policy studies and research on national initiatives on STEM. Investigators are welcome to draw on other key elements of current contexts for STEM education in arguing for the importance of other particular research topics. The REESE program expects that Contextual Research proposals will more typically address problems that are current and widely visible within STEM teaching and learning, with nearer-term, more-direct implications for use in the context of policy and practice than is the case for Emerging Research projects.

The research findings, prototypes, or other output of these contextual projects should be of use to communities of researchers, policy analysts, and developers who seek research to develop curricula, improve teacher education programs, or provide guidance to policymakers or other stakeholders. (Investigators interested in developing resources, models, or technologies—such as curricula—are encouraged to refer to the Discovery Research K-12 [DRK-12] program solicitation).

Examples of the type of work invited under this strand follow, although they do not constitute an exhaustive or mutually exclusive set of priorities.

1. STEM teaching and learning in formal and informal settings

REESE invites proposals that advance understanding of the broad role that teachers and faculty, teaching and instruction, curriculum and learning environments, and assessment play in learning and education in STEM content areas. Topics such as recruitment, preparation, continued development, and retention of STEM educators (e.g., K-12 teachers, graduate teaching assistants, higher education faculty, informal science educators) are central concerns of educational organizations of many types. REESE encourages research on the knowledge that STEM professionals need in order to enable their clientele to learn and engage with particular STEM topics and how that knowledge affects learning outcomes. It also encourages research on teacher or faculty understanding of learner knowledge in particular STEM domains, and on how learners’ pre-existing conceptual understandings or misunderstandings affect their learning of more sophisticated STEM content.

REESE is strongly committed to supporting projects that lead to further understanding STEM learning, of a variety of aspects of STEM content, in all of its contexts. Projects are encouraged to examine the implications of learning of particular content, in particular social contexts (such as classrooms, across cultural and linguistic groups, undergraduate courses, graduate programs, museums, web sites, or games) has for individual learning and achievement. REESE encourages proposals on STEM learning in informal settings such as, museums, science centers, zoos and aquariums, and from media, due to the continued growth of these activities, their increased importance to people’s out-of-school and lifelong learning experiences, and the blurring of the
boundaries in society as to where, when, and how people learn (e.g., National Research Council [NRC], 1999, How People Learn; NRC, 2007, Taking Science to School; and NRC, 2009, Learning Science in Informal Environments). REESE considers proposals on STEM learning in settings such as out-of-school programs, programs for at-risk students, alternative organizational designs for education and learning, home schooling, parent-child interactions, emergent social learning structures such as are available over the Internet, and linkages between formal and informal settings. REESE encourages proposals that examine the affective dimensions of learning, such as what motivates and sustains learner interest in STEM, and what fosters engagement and persistence.

REESE invites proposals for research that can help provide a foundation for methods for assessing learners’ knowledge in STEM content domains, ranging from the earliest learners through adults. The learning of specific STEM content must be an integral aspect of these proposals and the particular content domain must be made explicit. Such research may address how to characterize student understanding, broadly defined, for multiple uses by teachers, instructors, administrators, parents, students, and policymakers.

Rigorous research is needed to ascertain the effectiveness of different instructional strategies (e.g., peer tutoring in the elementary grades, the effectiveness of inquiry-based approaches in science learning, assessing high school laboratory experiences, cooperative learning at the undergraduate level). REESE encourages rigorous research that takes up questions of cause and effect, including studies that employ multi-level methods of causal inference. We especially encourage proposals from cross-disciplinary teams of researchers that include disciplinary experts.

Finally, REESE encourages proposals that unite research in teaching, learning, and assessment through the study of particular learning trajectories or progressions of STEM content across ages or grade levels. These learning progressions research projects may seek to test conceptual models for what may be needed for the effective teaching, learning, and assessment of the foundational content proposed. Such research studies explore the dynamic interplay affecting the relationships among learner, teacher or instructor, and content in testing significant hypotheses and theories about teaching, learning, and/or assessment. We encourage learning progressions studies of STEM content at critical transition points (e.g., middle grades to high school, high school to college, undergraduate to graduate study).

2. Education policy studies and research on national initiatives on STEM

The REESE program is interested in studies that test the recommendations from national reports and on research on the role of institutions and organizations as they pertain to STEM learning and education. Recent reports include The Opportunity Equation (Commission on Mathematics and Science Education, 2009), Learning Science in Informal Environments (NRC, 2009), Taking Science to School (NRC, 2007), and Foundations for Success (National Mathematics Advisory Panel, 2008).

For example, standards and policies shaping large-scale testing programs at the state level affect the opportunities students have to learn STEM content, the selection of curriculum and instructional materials (and so what is taught at which grade level and how it is taught), and rewards and incentive structures for organizational change. The data-analytic and interpretation capabilities of schools, administrators, and teachers may have implications for the implementation and use of such assessment programs. Similarly, general education requirements at the postsecondary level and graduation requirements at the secondary level may have important benefits, opportunity costs, and individual and organizational responses.

Policy studies can include such entities as K-12 school systems, informal educational organizations, and institutions of higher education (including graduate education). REESE encourages research that seeks to understand the ways organizations, and whole systems, respond to education laws, regulations, and other interventions across various levels (i.e., international, national, state, district, school, or university and college) as they relate to STEM learning. Issues of organizational behavior and dynamics are of interest in producing theoretical, descriptive, and potentially predictive models of change in STEM education and learning. REESE is also interested in projects that conduct secondary analyses of large-scale data sets.

REESE also invites proposals for projects that address relevant research questions for STEM-education initiatives at the state and national levels. Proposers can conduct studies on NSF supported work or work supported by other agencies or foundations, but all projects must share goals to advance STEM learning in the K-12, undergraduate, graduate, or informal arenas and work at a national scale. For example, there are specific initiatives or programs to: increase the supply, retention, and quality of STEM teachers; reform the preparation of STEM teachers; scale-up instructional materials in K-12 classrooms; increase in the number of students taking STEM Advanced Placement courses; increase emphasis on STEM in preschool programs: revise standard and assessments; and replicate or scale-up local or regional programs at the national level. There is a real need for research on such processes as replication and scale-up. How much fidelity to the original intervention is necessary? How should fidelity be defined and measured? How and in what ways do different contexts matter in replication and scale-up?

Such studies would need to identify clearly the initiative being studied, identify the specific research questions to be addressed, present evidence that demonstrate the program’s effectiveness, and provide a letter of support from the leaders/funders of the program demonstrating agreement for the proposed REESE project and ensuring access to data as appropriate. Additionally, proposed projects may require additional IRB review and approval. Proposals in this category must make an argument for why a study of this initiative (or a focused component of it) is important for informing national policy and practice. In addition, proposals should describe the key evaluation or research questions being pursued, explain the methodologies to be used, and provide evidence of how the study will have access to relevant data and programmatic information. Proposed projects need to advance understanding of the evaluative research of STEM education initiatives and be informative for future STEM education efforts.

C. Conferences and Workshops
D. Eligible proposal types

This solicitation calls for four types of proposals: Pathways, Knowledge Diffusion, Empirical Research, and Large Empirical Research. The context of all proposals, regardless of their type, must be responsive to one or more topics in the Emerging Research or Contextual Research strands described above. The proposal type and its research strand must be specified in the project title and in the first sentence of the project summary. In the project title, use the following format at the beginning of the title: Strand-Award Type-- (for example, Emerging Research-Pathways--An Exploration of NSP's Proposal-Review Processes).

1. Pathways Projects

Pathways projects relate to the "design, develop, and test" component of the DRL cycle of research and development. They are small-scale studies that include proof-of-concept studies, pilot studies, and feasibility studies-work that is on a path toward a major project (Synthesis, Empirical, or Large Scale Empirical) but that need to address critical issues or decisions before major projects can be formulated. Pathways proposals must describe the research questions, data to be gathered, and analytic approaches that will be taken. Pathways proposals cannot request funds for upfront work normally required for submission of a major proposal. Not all of the Pathways projects will necessarily result in a subsequent proposal. However, for those that do, the results and implications of the Pathways work must be explicitly described. Pathways projects can be funded for up to $250,000 and with duration of up to two years.

2. Knowledge Diffusion proposals

Knowledge diffusion projects are small grants for the synthesis of existing knowledge on a topic of critical importance to STEM learning, education, and/or evaluation, or for the diffusion of research-based knowledge. Synthesis proposals should identify areas where the knowledge base is sufficiently robust to support strong scientific claims, identify areas of importance to education research, evaluation or practice, and propose rigorous methods for synthesizing findings and drawing conclusions from a range of relevant literatures. Proposals should identify the criteria to be used for including or excluding studies in the synthesis. Investigators are permitted to propose workshops and other meetings in pursuit of the diffusion of research-based knowledge or to provide training on topics of advanced research or evaluation methods, analysis, modeling, or measurement. Emphasis will be placed on the proposed dissemination plan. Maximum award size for Knowledge Diffusion proposals is $250,000 for duration of up to two years.

3. Empirical Research proposals

Empirical Research proposals should identify areas that have the potential for advancing discovery and innovation in STEM learning. These projects are designed to support the collection of new empirical data or to conduct secondary analyses from existing state, national or international databases. Such projects are expected to be based deeply in the STEM disciplines. Maximum award size for most Empirical Research proposals is $1,500,000 for duration of up to three years.

4. Large Empirical Research proposals

REESE will support a limited number of projects up to $2,500,000 for up to five years. Proposals must carefully justify why a budget of this size would be required to carry out the research. The proposals will generally involve teams of multi-disciplinary experts working on conceptually related projects. For example, one team could seek to develop a new behavioral measure of learning in a content area of particular STEM importance, while a second team studied the neural underpinnings of learning in the area. A proposal may have one team generating a mature study of a large sample of participants, a randomized control trial. Another example would be one team conducting largely theory-generating work from an ethnographic approach, while other teams conduct complementary quantitative studies. Such proposals must also include a Coordination Plan that provides (1) a description of how the separate activities are conceptually interlinked, (2) the agreements for data sharing among the partners, (3) a description of how samples or data collection will be complementary or will use parallel data definitions, (4) a discussion of how data will be jointly modeled or analyzed or how findings will be aggregated across teams, (5) plans for joint publication and dissemination, and a plan for ongoing dialogue, communication, and scholarly exchange. The Coordination Plan should be described in no more than five pages and submitted as Supplementary Documentation.

Other types of proposals that might be appropriate for a large award would be a longitudinal study of a large sample of participants, a randomized control trial of an intervention whose efficacy has been established in more limited conditions, or a study addressing replication or scale-up. These projects do not require a Coordination Plan.

References

III. AWARD INFORMATION

Estimated program budget, number of awards and average award size/duration are subject to the availability of funds. NSF expects to make standard or continuing grant awards. The estimated number of awards will be 30 to 50 for the competition in FY 2010, pending availability of funds. It is anticipated that about 5-10 Pathways, 5-10 Knowledge Diffusion, 10-15 Empirical, and 5-10 Large Empirical awards will be made. The anticipated funding amount is $27,000,000 for the FY 2010 competition, pending availability of funds. The maximum award for Pathways projects is $250,000 with duration of up to two years. The maximum award for Knowledge Diffusion projects is $250,000 with duration of up to two years. The maximum award for Empirical research projects is $1,500,000 with duration of up to three years. The maximum award for Large Empirical research projects is $2,500,000 with duration of up to five years.

IV. ELIGIBILITY INFORMATION

The categories of proposers eligible to submit proposals to the National Science Foundation are identified in the Grant Proposal Guide, Chapter I, Section E.

Organization Limit:

None Specified

PI Limit:

None Specified

Limit on Number of Proposals per Organization:

None Specified

Limit on Number of Proposals per PI:

None Specified

V. PROPOSAL PREPARATION AND SUBMISSION INSTRUCTIONS

A. Proposal Preparation Instructions

Full Proposal Instructions: Proposals submitted in response to this program solicitation should be prepared and submitted in accordance with the guidelines specified in the NSF Grant Proposal Guide (GPG). The complete text of the GPG is available electronically on the NSF website at: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=gpg. Paper copies of the GPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-PUBS (7827) or by e-mail from mailto:pubs@nsf.gov.

The proposal type and its research strand must be specified in the project title and in the first sentence of the project summary. In the project title, use the following format at the beginning of the title: Strand-Award Type-- (for example, Emerging Research-Pathways--An Exploration of NSF’s Proposal-Review Processes).

Proposals requesting support for postdoctoral positions should take special note of the requirement for a mentoring plan for postdoctoral appointees. Proposals that request support for a postdoctoral position and do not have a mentoring plan will be returned without review. Please refer to the updated GPG for specific requirements.
The REESE program has four additional proposal preparation requirements that each proposal must address: (1) Research design and methodology; (2) project personnel and management; (3) dissemination; and (4) project evaluation.

Research design and methodology: REESE expects investigators to propose rigorous and replicable research methods that are well-justified, are suited to the particular research questions being studied, and that have the likelihood of yielding significant knowledge in pursuit of core problems in STEM education and learning. Each supported project must meet the following basic requirements:

- The proposed topics, questions, methodologies, and research settings must be consistent with the overall goals of the REESE program. Investigators should pose research problems of compelling national importance deeply rooted in one or more STEM fields. Research questions must be clear and specific and must be answerable through the means proposed.
- The investigators must demonstrate how the proposed research program builds upon existing evidence obtained, data and measures are well-documented, replicable, and usable by other research teams wishing to work on similar problems from other vantage points or by using other research designs. It is the intention of the REESE program to encourage investigative teams to work simultaneously, as part of a larger knowledge community, on a given problem of national importance. See the Large Empirical Research Empirical Studies Empirical Research (LREESE) Program Solicitation for related information.
- The investigators must explicitly describe the research design, including the methods, sample selected for study, instruments, and all means of data collection. Information must also be provided on the reliability, validity, and appropriateness of proposed measures and instruments. If the reliability and validity of the instruments are initially unknown, the applicant must include specific plans for establishing these measurement properties.
- The investigators must provide a specific data analysis plan, including procedures to code and (if necessary) reduce qualitative data, details on how potential threats to internal and external validity will be addressed, power analyses (when appropriate) demonstrating the adequacy of proposed cell sizes, and plans for estimating effect sizes as appropriate.

Proposals are strengthened by the reporting of pilot results.

Project personnel and management: The research and management roles of each of the senior personnel on the project must be described in brief within the project description. Collaborative teams representing multiple disciplines are typical in REESE projects. In addition, at least one of the senior personnel must be designated as the methodology and measurement leader of the project. In single-investigator projects, this person will necessarily be the principal investigator. In multi-investigator projects, this person must be listed among senior personnel and may or may not be the principal or a co-investigator. All projects should address the role to be played by STEM disciplinary experts, as appropriate.

Where projects request time for students and other trainees, specific plans must be discussed for how any postdoctoral associates, graduate students, undergraduates, or others will benefit in their education and training in connection to the proposed research. Involvement of students is encouraged as a means of building capacity in STEM education research.

REESE does not necessarily expect the same team of investigators to conduct research across all components of the cycle of research. The investigators must demonstrate how the proposed research program builds upon existing evidence obtained, data and measures are well-documented, replicable, and usable by other research teams wishing to work on similar problems from other vantage points or by using other research designs. It is the intention of the REESE program to encourage investigative teams to work simultaneously, as part of a larger knowledge community, on a given problem of national importance. See the Large Empirical Research Empirical Studies Empirical Research (LREESE) Program Solicitation for related information.

Dissemination: All REESE projects are expected to accumulate and communicate knowledge to the relevant research, policy, and practitioner communities. As part of DRL's strong and unwavering commitment to the broader impacts of funded research, reports from successful REESE projects must be published in peer-reviewed professional or scholarly journals, and findings (positive or negative) must be disseminated through appropriate means to audiences relevant to the goals of the project. Projects are encouraged to seek out appropriate audiences across disciplinary boundaries. Projects will also be expected to share research designs, findings, and overall project information with policymakers and the REESE Diffusion and Evaluation Network, the Center for Advancing Research and Communication (ARC) at the University of Chicago, and report annually to an on-line data system.

Project Evaluation: All projects must have an evaluation plan that includes measures that the project team intends to use in assessing its success and meeting its milestones and objectives. It is critical that all projects have a substantive external expert review mechanism that provides regular feedback on the project's research methods and progress, analysis procedures, interpretation of data into findings, and dissemination activities. Proposals must make a clear argument for what steps will be taken to ensure that the proposed evaluation is distant from the project and is objective, and must describe how evaluation input will be used to shape the project.

Proposers are reminded to identify the program solicitation number (NSF 09-601) in the program solicitation block on the NSF Cover Sheet For Proposal to the National Science Foundation. Compliance with this requirement is critical to determining the relevant proposal processing guidelines. Failure to submit this information may delay processing.

B. Budgetary Information

Cost Sharing: Cost sharing is not required under this solicitation.

Budget Preparation Instructions: A careful and realistic budget in accordance with the general guidelines contained in the NSF Grant Proposal Guide (GPG), consistent with the proposed activities, and including a request for funds to cover the cost of attendance of the PI at each year's annual awardee meeting in Arlington, VA should be submitted with the proposal.

C. Due Dates

- **Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):**
 - November 12, 2009

D. FastLane Requirements

Proposers are required to prepare and submit all proposals for this program solicitation through use of the NSF FastLane system. Detailed instructions regarding the technical aspects of proposal preparation and submission via FastLane are available at http://www.fastlane.nsf.gov/a1/newstan.htm. For FastLane user support, call the FastLane Help Desk at 1-800-673-6188 or e-mail fastlane@nsf.gov. The FastLane Help Desk answers general technical questions related to the use of the FastLane system. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this...
VI. NSF PROPOSAL PROCESSING AND REVIEW PROCEDURES

Proposals received by NSF are assigned to the appropriate NSF program where they will be reviewed if they meet NSF proposal preparation requirements. All proposals are carefully reviewed by a scientist, engineer, or educator serving as an NSF Program Officer, and usually by three to ten other persons outside NSF who are experts in the particular fields represented by the proposal. These reviewers are selected by Program Officers charged with the oversight of the review process. Proposers are invited to suggest names of persons they believe are especially well qualified to review the proposal and/or persons they would prefer not review the proposal. These suggestions may serve as one source in the reviewer selection process at the Program Officer's discretion. Submission of such names, however, is optional. Care is taken to ensure that reviewers have no conflicts of interest with the proposal.

A. NSF Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board (NSB)-approved merit review criteria: intellectual merit and the broader impacts of the proposed effort. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two NSB-approved merit review criteria are listed below. The criteria include considerations that help define them. These considerations are suggestions and not all will apply to any given proposal. While proposers must address both merit review criteria, reviewers will be asked to address only those considerations that are relevant to the proposal being considered and for which the reviewer is qualified to make judgements.

1. What is the intellectual merit of the proposed activity?
 - How important is the proposed activity to advancing knowledge and understanding within its own field or across different fields?
 - How well qualified is the proposer (individual or team) to conduct the project? (If appropriate, the reviewer will comment on the quality of the prior work.)
 - To what extent does the proposed activity suggest and explore creative, original, or potentially transformative concepts?
 - How well conceived and organized is the proposed activity?
 - Is there sufficient access to resources?

2. What are the broader impacts of the proposed activity?
 - How well does the activity advance discovery and understanding while promoting teaching, training, and learning?
 - How well does the proposed activity broaden the participation of underrepresented groups (e.g., gender, ethnicity, disability, geographic, etc.)?
 - To what extent will it enhance the infrastructure for research and education, such as facilities, instrumentation, networks, and partnerships?
 - Will the results be disseminated broadly to enhance scientific and technological understanding?
 - What may be the benefits of the proposed activity to society?

Mentoring activities provided to postdoctoral researchers supported on the project, as described in a one-page supplementary document, will be evaluated under the Broader Impacts criterion.

NSF staff also will give careful consideration to the following in making funding decisions:

Integration of Research and Education

One of the principal strategies in support of NSF's goals is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions. These institutions provide abundant opportunities where individuals may concurrently assume responsibilities as researchers, educators, and students and where all can engage in joint efforts that infuse education with the excitement of discovery and enrich research through the diversity of learning perspectives.

Integrating Diversity into NSF Programs, Projects, and Activities

Broadening opportunities and enabling the participation of all citizens -- women and men, underrepresented minorities, and persons with disabilities -- is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by Ad hoc Review and/or Panel Review.

Reviewers will be asked to formulate a recommendation to either support or decline each proposal. The Program Officer assigned to manage the proposal's review will consider the advice of reviewers and will formulate a recommendation.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to the cognizant Division Director whether the proposal should be declined or recommended for award. NSF is striving to be able to tell applicants whether their proposals have been declined or recommended for funding within six months. The time interval begins on the deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director accepts the Program Officer's recommendation.

A summary rating and accompanying narrative will be completed and submitted by each reviewer. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or
In all cases, after programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants and Agreements for review of business, financial, and policy implications and the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.

VII. AWARD ADMINISTRATION INFORMATION

A. Notification of the Award

Notification of the award is made to the submitting organization by a Grants Officer in the Division of Grants and Agreements. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process.)

B. Award Conditions

An NSF award consists of: (1) the award letter, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award letter; (4) the applicable award conditions, such as Grant General Conditions (GC-1); * or Research Terms and Conditions * and (5) any announcement or other NSF issuance that may be incorporated by reference in the award letter. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF's Website at http://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF. Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer at least 90 days before the end of the current budget period. (Some programs or awards require more frequent project reports). Within 90 days after expiration of a grant, the PI also is required to submit a final project report.

Failure to provide the required annual or final project reports will delay NSF review and processing of any future funding increments as well as any pending proposals for that PI. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF’s electronic project-reporting system, available through FastLane, for preparation and submission of annual and final project reports. Such reports provide information on activities and findings, project participants (individual and organizational) publications; and, other specific products and contributions. PIs will not be required to re-enter information previously provided, either with a proposal or in earlier updates using the electronic system. Submission of the report via FastLane constitutes certification by the PI that the contents of the report are accurate and complete.

The REESE program has awarded a dissemination and evaluation network project as a cooperative agreement. The resource network is responsible for synthesizing findings across the REESE portfolio, providing technical assistance to REESE projects, promoting national awareness of research contributions from the REESE portfolio, and building the REESE community through PI and special interest meetings. All REESE projects are expected to share their proposals and findings with the resource network, to participate in annual PI meetings, and other meetings of interest and to be responsive to requests for information from the resource network.

VIII. AGENCY CONTACTS

General inquiries regarding this program should be made to:

- Address questions to REESE program officers, telephone: (703)292-8650, email: DRLREESE@nsf.gov

For questions related to the use of FastLane, contact:

- FastLane Help Desk, telephone: 1-800-673-6188; e-mail: fastlane@nsf.gov.
The NSF Website provides the most comprehensive source of information on NSF Directorates (including contact information), programs and funding opportunities. Use of this Website by potential proposers is strongly encouraged. In addition, National Science Foundation Update is a free e-mail subscription service designed to keep potential proposers and other interested parties apprised of new NSF funding opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Regional Grants Conferences. Subscribers are informed through e-mail when new publications are issued that match their identified interests. Users can subscribe to this service by clicking the "Get NSF Updates by Email" link on the NSF web site.

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding opportunities may be accessed via this new mechanism. Further information on Grants.gov may be obtained at http://www.grants.gov.

ABOUT THE NATIONAL SCIENCE FOUNDATION

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic research.

NSF receives approximately 40,000 proposals each year for research, education and training projects, of which approximately 11,000 are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities provide funding for special assistance or equipment to enable persons with disabilities to work on NSF-supported projects. See Grant Proposal Guide Chapter II, Section D.2 for instructions regarding preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.

The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants and cooperative agreements for research and education in the sciences, mathematics, and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Website at http://www.nsf.gov

- **Location:** 4201 Wilson Blvd. Arlington, VA 22230
- **For General Information**
 - NSF Information Center: (703) 292-5111
- **TDD (for the hearing-impaired):** (703) 292-5090
- **To Order Publications or Forms:**
 - Send an e-mail to: nsfpubs@nsf.gov
 - or telephone: (703) 292-7827
- **To Locate NSF Employees:** (703) 292-5111

PRIVACY ACT AND PUBLIC BURDEN STATEMENTS

The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and project reports submitted by awardees will be used for program evaluation and reporting within the Executive Branch and to Congress. The information requested will not have an adverse effect on qualified reviewers and staff assistants as part of the proposal review process; to proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to other government agencies or other entities needing information regarding applicants or nominees as part of a
joint application review process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and used to select potential candidates to serve as peer reviewers or advisory committee members. See Systems of Records, NSF-50, "Principal Investigator/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004), and NSF-51, "Reviewer/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004). Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton
Reports Clearance Officer
Division of Administrative Services
National Science Foundation
Arlington, VA 22230