Cognitive Neuroscience

PROGRAM SOLICITATION
NSF 14-514

REPLACES DOCUMENT(S):
NSF 09-563

National Science Foundation
Directorate for Social, Behavioral & Economic Sciences
Division of Behavioral and Cognitive Sciences

Full Proposal Target Date(s):
February 25, 2014
February 25, Annually Thereafter
August 27, 2014
August 27, Annually Thereafter

IMPORTANT INFORMATION AND REVISION NOTES
The spring target date was changed from January 24 to February 25 in order to allow approximately a 6-month period between the fall and spring submission dates.

Any proposal submitted in response to this solicitation should be submitted in accordance with the revised NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 15-1), which is effective for proposals submitted, or due, on or after December 26, 2014. The PAPPG is consistent with, and, implements the new Uniform Administrative Requirements, Cost Principles, and Audit Requirements for Federal Awards (Uniform Guidance) (2 CFR § 200).

SUMMARY OF PROGRAM REQUIREMENTS

General Information

Program Title:
Cognitive Neuroscience

Synopsis of Program:
The Cognitive Neuroscience Program seeks highly innovative and interdisciplinary proposals aimed at advancing a rigorous understanding of how the human brain supports thought, perception, affect, action, social processes, and other aspects of cognition and behavior, including how such processes develop and change in the brain and through time.

Cognizant Program Officer(s):

Please note that the following information is current at the time of publishing. See program website for any updates to the points of contact.

- Alumit Ishai - Pgm Director, 907.03, telephone: (703) 292-5145, email: aishai@nsf.gov
- Tanika M. White - Pgm Assistant, telephone: (703) 292-8962, email: twhite@nsf.gov

Applicable Catalog of Federal Domestic Assistance (CFDA) Number(s):
- 47.075 --- Social Behavioral and Economic Sciences

Award Information

Anticipated Type of Award: Standard Grant or Continuing Grant
Estimated Number of Awards: 10 to 25 each year
Anticipated Funding Amount: $8,000,000 - annually, pending availability of funds.
Eligibility Information

Who May Submit Proposals:
The categories of proposers eligible to submit proposals to the National Science Foundation are identified in the Grant Proposal Guide, Chapter I, Section E.

Who May Serve as PI:
There are no restrictions or limits.

Limit on Number of Proposals per Organization:
There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI:
There are no restrictions or limits.

Proposal Preparation and Submission Instructions

A. Proposal Preparation Instructions

- Letters of Intent: Not required
- Preliminary Proposal Submission: Not required
- Full Proposals:

B. Budgetary Information

- Cost Sharing Requirements: Inclusion of voluntary committed cost sharing is prohibited.
- Indirect Cost (F&A) Limitations: Not Applicable
- Other Budgetary Limitations: Not Applicable

C. Due Dates

- Full Proposal Target Date(s):
 - February 25, 2014
 - February 25, Annually Thereafter
 - August 27, 2014
 - August 27, Annually Thereafter

Proposal Review Information Criteria

Merit Review Criteria: National Science Board approved criteria apply.

Award Administration Information

Award Conditions: Standard NSF award conditions apply.

Reporting Requirements: Standard NSF reporting requirements apply.

TABLE OF CONTENTS

Summary of Program Requirements
I. Introduction
II. Program Description
III. Award Information
IV. Eligibility Information
I. INTRODUCTION

The National Science Foundation announces the area of Cognitive Neuroscience within the Division of Behavioral and Cognitive Sciences in the Directorate for Social, Behavioral, and Economic Sciences.

Cognitive neuroscience has emerged in the last decade as an intensely active and influential discipline, forged from interactions among the cognitive sciences, neurology, neuroimaging (including physics and statistics), physiology, neuroscience, psychiatry, and other fields. Of particular importance for this discipline have been new methods for non-invasive functional neuroimaging of humans performing psychological tasks. As this field is reaching maturity, the National Science Foundation intends for the new cognitive neuroscience emphasis to spur the development of highly novel techniques and models directed toward enabling basic scientific understanding of a broad range of issues involving brain, cognition, and behavior. The emphasis at NSF will be placed on integration of the cognitive sciences, social and economic sciences, and engineering in service of insights into healthy functions of brain, cognition, and behavior.

The cross-disciplinary integration and exploitation of new techniques in cognitive neuroscience has generated a rapid growth in significant scientific advances. Research topics have included sensory processes (including sensation, thirst, multi-sensory integration), higher perceptual processes (for faces, music, etc.), higher cognitive functions (e.g., decision-making, reasoning, mathematics, mental imagery, awareness), language (e.g., syntax, multi-linguism, discourse), sleep, affect, social processes, learning, memory, attention, motor, and executive functions. Cognitive neuroscientists further clarify their findings by examining developmental and transformational aspects of such phenomena across the span of life, from infancy to late adulthood, and through time.

New frontiers in cognitive neuroscience research have emerged from investigations that integrate data from a variety of techniques. One very useful technique has been neuroimaging, including positron emission tomography (PET), functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG), optical imaging (near infrared spectroscopy or NIRS), anatomical MRI, and diffusion tensor imaging (DTI). A second class of techniques includes physiological recording such as subdural and deep brain electrode recording, electroencephalography (EEG), event-related electrical potentials (ERPs), and galvanic skin responses (GSRs). In addition, stimulation methods have been employed, including transcranial magnetic stimulation (TMS), subdural and deep brain electrode stimulation, and drug stimulation. A fourth approach involves cognitive and behavioral methods, such as lesion-deficit neuropsychology and experimental psychology. Other techniques have included genetic analysis, molecular modeling, and computational modeling. The foregoing variety of methods is used with individuals in healthy, neurological, psychiatric, and cognitively-impaired conditions. The data from such varied sources can be further clarified by comparison with invasive neurophysiological recordings in non-human primates and other mammals.

Findings from cognitive neuroscience can elucidate functional brain organization, such as the operations performed by a particular brain area and the system of distributed, discrete neural areas supporting a specific cognitive, perceptual, motor, or affective operation or representation. Moreover, these findings can reveal the effect on brain organization of individual differences (including genetic variation), plasticity, and recovery of function following damage to the nervous system.

Hypotheses springing from the data of a cognitive science, social, developmental, or life span study can now in some instances be constrained by brain-based data. Strategies for collecting brain-based data that bear on cognitive/behavioral hypotheses include but are not limited to the following four examples. Other powerful strategies are expected to evolve in the future.

- First, if a pattern of neural activity can be linked to a particular cognitive process, the presence of that pattern can be used as a marker of that cognitive process in studies of other mental performances.
- Second, data from studies of stimulus adaptation during neuroimaging can elucidate the character of mental representations in a particular neural system. Thus, as in the "looking time" paradigms used with infants, the neural sensitivity to the "sameness" of stimuli can be used to provide rich descriptions of equivalence classes, invariances, and non-invariances for neural representations in each cortical region.
- A third example of using brain data for evaluating cognitive hypotheses is experiments in which behavioral success on a given task is correlated with the intensity of a neuroimaging signal in a specific brain area. Such relationships between cognitive performance and neural activity are important indicators of a necessary relationship between a brain area and a component of cognitive/behavioral processing.
- Fourth, hypotheses derived from behavioral data suggesting separable processes can be evaluated with respect to the functional brain organization implied by cognitive neuroscience findings. If a given theory hypothesizes that two specific cognitive states are supported by the same underlying process, but an alternative assumes those states are supported by different processes, data from cognitive neuroscience might favor one account. Neuroimaging data from healthy humans can be refined by comparison with findings from studies of cognitive/behavioral impairments exhibited either by humans with discrete lesions (stroke patients), humans with implanted deep brain stimulators, healthy humans with transient neural disruptions (via TMS), or humans stimulated by a pharmacological agent.

Moreover, cognitive neuroscience also can elucidate the duration and sequencing of sub-processes, for example, by integrating high temporal resolution MEG data with high spatial resolution fMRI within subject and task. Such finely calibrated data can then inform cognitive and behavioral process models. Finally, subsequent comparisons of brain organization across species may allow the neural basis of such processes to be understood in a biological context.
II. PROGRAM DESCRIPTION

The Cognitive Neuroscience program seeks highly innovative proposals aimed at advancing a rigorous understanding of how the human brain supports thought, perception, affect, action, social processes, and other aspects of cognition and behavior. Topics may bear on core functions such as sensory, learning, language, reasoning, emotion, and executive processes, or more specialized processes such as empathy, creativity, representation of self and other, or intentionality, among many other possibilities. Topics may also include how such processes develop and change in the brain.

The program is particularly interested in supporting the development of new techniques and technologies for recording, analyzing, and modeling complex brain activity. Such projects should include a plan for sharing new software and other technologies with the research community at large.

Studies of disease states (e.g., brain damaged patients) may be components of projects supported by this program. However, the emphasis in such projects must be to advance basic scientific understanding of neural mechanisms, and not on disease etiology, diagnosis, or treatment.

The program also intends to foster projects that integrate perspectives across disciplines, e.g., from the cognitive sciences, developmental sciences, biology, computer science, engineering, education, anthropology, physics, mathematics and statistics. For example, projects that involve collaborations among individuals with expertise in one of the cognitive sciences, neuroimaging, neural microrcircuity, and modeling complex systems are strongly encouraged. Other interdisciplinary emphases are also of keen interest.

Examples of appropriate grant proposals include, but are not be limited to, the following. It is to be expected that scientific advances will overtake many of the following issues, and that other research and development matters will emerge as key enablers to progress in basic cognitive neuroscience.

- Approaches addressing research questions with a novel range of techniques (e.g., using neuroimaging, lesion-deficit data, and computational modeling).
- Hypotheses based on cognitive/behavioral/social/developmental research that lead to tests either of systems level or neuro-computational models of psychological processes. The computational models should involve vertical integration over realistic neural circuitry at specified scales.
- Development of new methods for acquisition-time representation of functional neuroimaging data, e.g., providing output which can be used to control online continuous, experimental manipulations of behavioral/cognitive (stimulus) variables.
- Study of the relation between cognitive/behavioral performance and structural features of brain such as white/grey matter ratio, neurotransmitter sites, connectivity maps, unfolded topological models of cortex, morphology, or diffusion tensor imaging.
- Integrated use of techniques involving both human and animal models to provide convergent evidence about a specific research problem (e.g., the neural codes for perceptual representations, the role of endogenous neurochemicals in social bonding).
- Development of quantitative techniques for meta-analysis and modeling of functional neuroimaging data with respect to localization, temporal dynamics, and componential modeling of cognitive/behavioral processes.
- Neuroimaging of the infant and child brain for comparison with adults in order to understand the development of functional brain organization.
- Development of new methods for characterizing the morphology of activation clusters in neuroimaging data (going beyond the stereotactic location of peak activation).
- Comparative gene expression studies in nonhuman primates of the neural regions governing higher cognitive functions within a biological framework.
- Study of the development and character of specialization of brain areas for particular cognitive, perceptual, affective, and action processes.
- Development of new techniques for integrating independent measurements of the dynamic interactions in time and space of specific neural activity.
- Mathematical analyses of stable individual differences in brain organization (e.g., modeling individual differences in localized neural activity for elementary psychological operations).
- Adaptation of advanced experimental psychology methods for adults and children afflicted with neurological or cognitive impairments in order to characterize more fully the effects of dysfunctions of specific brain areas, clarifying thereby the functions of those areas. (For instance, do brain areas compromised by Parkinson's Disease support non-motor cognitive or executive functions?)
- The effect of environmental factors (impoverishment or enrichment) on the development and function of specific brain areas.
- Development of effective techniques for mapping receptor/ligand binding profiles during cognitive functions such as working memory, selective attention, and implicit memory in healthy humans.

FUNDING OPPORTUNITIES

(1) Individual Investigator Research Projects. Many research topics are studied most effectively by individual research scientists or by small teams of collaborating investigators. Investigators are invited to submit proposals that focus on cognitive neuroscience topics, including but not limited to those illustrated above.

(2) Workshops. Workshops will be supported that bring together diverse scientific partners around specific topics. Meetings will be focused on topics that can benefit from intensive small group discussions. It is anticipated that most workshops will require $15,000-$20,000 of support for 12 months, including indirect costs. However, larger requests will also be considered.

III. AWARD INFORMATION

Estimated program budget (of about $8,000,000 annually), number of awards, and average award size/duration are subject to the availability of funds. It is anticipated that about 10 - 25 awards will be made annually as standard or continuing grants.
IV. ELIGIBILITY INFORMATION

Who May Submit Proposals:

The categories of proposers eligible to submit proposals to the National Science Foundation are identified in the
Grant Proposal Guide, Chapter I, Section E.

Who May Serve as PI:

There are no restrictions or limits.

Limit on Number of Proposals per Organization:

There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI:

There are no restrictions or limits.

V. PROPOSAL PREPARATION AND SUBMISSION INSTRUCTIONS

A. Proposal Preparation Instructions

Full Proposal Preparation Instructions: Proposers may opt to submit proposals in response to this Program Solicitation via
Grants.gov or via the NSF FastLane system.

- Full proposals submitted via FastLane: Proposals submitted in response to this program solicitation should be prepared and
 submitted in accordance with the general guidelines contained in the NSF Grant Proposal Guide (GPG). The complete text of
 Paper copies of the GPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail
 from nsfpubs@nsf.gov. Proposers are reminded to identify this program solicitation number in the program solicitation block
 on the NSF Cover Sheet For Proposal to the National Science Foundation. Compliance with this requirement is critical to
determining the relevant proposal processing guidelines. Failure to submit this information may delay processing.

- Full proposals submitted via Grants.gov: Proposals submitted in response to this program solicitation via Grants.gov should
 be prepared and submitted in accordance with the NSF Grants.gov Application Guide: A Guide for the Preparation and
 Submission of NSF Applications via Grants.gov. The complete text of the NSF Grants.gov Application Guide is available on
 the Grants.gov website and on the NSF website at: (http://www.nsf.gov/publications/pub_summ.jsp?
ods_key=grantsgovguide). To obtain copies of the Application Guide and Application Forms Package, click on the Apply tab
on the Grants.gov site, then click on the Apply Step 1: Download a Grant Application Package and Application Instructions
link and enter the funding opportunity number, (the program solicitation number without the NSF prefix) and press the
Download Package button. Paper copies of the Grants.gov Application Guide also may be obtained from the NSF
Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

In determining which method to utilize in the electronic preparation and submission of the proposal, please note the following:

Collaborative Proposals. All collaborative proposals submitted as separate submissions from multiple organizations must be submitted
via the NSF FastLane system. Chapter II, Section D.5 of the Grant Proposal Guide provides additional information on collaborative
proposals.

See Chapter II.C.2 of the GPG for guidance on the required sections of a full research proposal submitted to NSF. Please note that the
proposal preparation instructions provided in this program solicitation may deviate from the GPG instructions.

B. Budgetary Information

Cost Sharing: Inclusion of voluntary committed cost sharing is prohibited

C. Due Dates

- Full Proposal Target Date(s):

 February 25, 2014

 February 25, Annually Thereafter

 August 27, 2014

 August 27, Annually Thereafter

D. FastLane/Grants.gov Requirements

For Proposals Submitted Via FastLane:

To prepare and submit a proposal via FastLane, see detailed technical instructions available at:
https://www.fastlane.nsf.gov/a1/newstan.htm. For FastLane user support, call the FastLane Help Desk at 1-800-673-6188 or e-mail fastlane@nsf.gov. The FastLane Help Desk answers general technical questions related to the use of
the FastLane system. Specific questions related to this program solicitation should be referred to the NSF program
In basic research and education, the following three principles apply:

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

For Proposals Submitted Via Grants.gov:

Before using Grants.gov for the first time, each organization must register to create an institutional profile. Once registered, the applicant's organization can then apply for any federal grant on the Grants.gov website. Comprehensive information about using Grants.gov is available on the Grants.gov Applicant Resources webpage: http://www.grants.gov/web/grants/applicants.html. In addition, the NSF Grants.gov Application Guide (see link in Section V.A) provides instructions regarding the technical preparation of proposals via Grants.gov. For Grants.gov user support, contact the Grants.gov Contact Center at 1-800-518-4726 or by email: support@grants.gov. The Grants.gov Contact Center answers general technical questions related to the use of Grants.gov. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this solicitation.

VI. NSF PROPOSAL PROCESSING AND REVIEW PROCEDURES

Proposals received by NSF are assigned to the appropriate NSF program for acknowledgement and, if they meet NSF requirements, for review. All proposals are carefully reviewed by a scientist, engineer, or educator serving as an NSF Program Officer, and usually by three to ten other persons outside NSF either as ad hoc reviewers, panelists, or both, who are experts in the particular fields represented by the proposal. These reviewers are selected by Program Officers charged with oversight of the review process. Proposers are invited to suggest names of persons they believe are especially well qualified to review the proposal and/or persons they would prefer not review the proposal. These suggestions may serve as one source in the reviewer selection process at the Program Officer's discretion. Submission of such names, however, is optional. Care is taken to ensure that reviewers have no conflicts of interest with the proposal. In addition, Program Officers may obtain comments from site visits before recommending final action on proposals. Senior NSF staff further review recommendations for awards. A flowchart that depicts the entire NSF proposal and award process (and associated timeline) is included in the GPG as Exhibit III-1.

A comprehensive description of the Foundation’s merit review process is available on the NSF website at: http://nsf.gov/bfa/dias/policy/merit_review/.

Proposers should also be aware of core strategies that are essential to the fulfillment of NSF's mission, as articulated in Investing in Science, Engineering, and Education for the Nation's Future: NSF Strategic Plan for 2014-2018. These strategies are integrated in the program planning and implementation process, of which proposal review is one part. NSF's mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

One of the strategic objectives in support of NSF's mission is to foster integration of research and education through the programs, projects, and activities that support at academic and research institutions. These institutions must recruit, train, and prepare a diverse STEM workforce to advance the frontiers of science and participate in the U.S. technology-based economy. NSF's contribution to the national innovation ecosystem is to provide cutting-edge research under the guidance of the Nation's most creative scientists and engineers. NSF also supports development of a strong science, technology, engineering, and mathematics (STEM) workforce by investing in building the knowledge that informs improvements in STEM teaching and learning.

NSF's mission calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions that are underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF's mission "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes." NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:

- All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
- NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These “Broader Impacts” may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
- Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of
these activities may best be done at a higher, more aggregated, level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. **Both** criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (GPG Chapter II.C.2.d.i. contains additional information for use by proposers in development of the Project Description section of the proposal.) Reviewers are strongly encouraged to review the criteria, including GPG Chapter II.C.2.d.i., prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

- **Intellectual Merit:** The Intellectual Merit criterion encompasses the potential to advance knowledge; and
- **Broader Impacts:** The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to
 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed activities?
5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

Broader impacts may be accomplished through the research itself, through the activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific knowledge and activities that contribute to achievement of societally relevant outcomes. Such outcomes include, but are not limited to: full participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and mathematics (STEM); improved STEM education and educator development at any level; increased public scientific literacy and public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security; increased economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management Plan and the Postdoctoral Researcher Mentoring Plan, as appropriate.

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by Ad hoc Review and/or Panel Review.

Reviewers will be asked to evaluate proposals using two National Science Board approved merit review criteria and, if applicable, additional program specific criteria. A summary rating and accompanying narrative will be completed and submitted by each reviewer. The Program Officer assigned to manage the proposal's review will consider the advice of reviewers and will formulate a recommendation.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to the cognizant Division Director whether the proposal should be declined or recommended for award. NSF strives to be able to tell applicants whether their proposals have been declined or recommended for funding within six months. Large or particularly complex proposals or proposals from new awardees may require additional review and processing time. The time interval begins on the deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director acts upon the Program Officer’s recommendation.

After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants and Agreements for review of business, financial, and policy implications. After an administrative review has occurred, Grants and Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.

Once an award or declination decision has been made, Principal Investigators are provided feedback about their proposals. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers or any reviewer-identifying information, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or decline funding.

VII. AWARD ADMINISTRATION INFORMATION
A. Notification of the Award

Notification of the award is made to the submitting organization by a Grants Officer in the Division of Grants and Agreements. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process.)

B. Award Conditions

An NSF award consists of: (1) the award notice, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award notice; (4) the applicable award conditions, such as Grant General Conditions (GC-1)*; or Research Terms and Conditions* and (5) any announcement or other NSF issuance that may be incorporated by reference in the award notice. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF’s Website at http://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF. Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer at least 90 days prior to the end of the current budget period. (Some programs or awards require submission of more frequent project reports.) Within 90 days following expiration of a grant, the PI also is required to submit a final project report, and a project outcomes report for the general public.

Failure to provide the required annual or final project reports, or the project outcomes report, will delay NSF review and processing of any future funding increments as well as any pending proposals for all identified PIs and co-PIs on a given award. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF’s electronic project-reporting system, available through Research.gov, for preparation and submission of annual and final project reports. Such reports provide information on accomplishments, project participants (individual and organizational), publications, and other specific products and impacts of the project. Submission of the report via Research.gov constitutes certification by the PI that the contents of the report are accurate and complete. The project outcomes report also must be prepared and submitted using Research.gov. This report serves as a brief summary, prepared specifically for the public, of the nature and outcomes of the project. This report will be posted on the NSF website exactly as it is submitted by the PI.

VIII. AGENCY CONTACTS

Please note that the program contact information is current at the time of publishing. See program website for any updates to the points of contact.

General inquiries regarding this program should be made to:

- Alumit Ishai - Pgm Director, 907.03, telephone: (703) 292-5145, email: aishai@nsf.gov
- Tanika M. White - Pgm Assistant, telephone: (703) 292-8962, email: twhite@nsf.gov

For questions related to the use of FastLane, contact:

- FastLane Help Desk, telephone: 1-800-673-6188; e-mail: fastlane@nsf.gov.

For questions relating to Grants.gov contact:

- Grants.gov Contact Center: If the Authorized Organizational Representatives (AOR) has not received a confirmation message from Grants.gov within 48 hours of submission of application, please contact via telephone: 1-800-518-4726; e-mail: support@grants.gov.

IX. OTHER INFORMATION

The NSF website provides the most comprehensive source of information on NSF Directories (including contact information), programs and funding opportunities. Use of this website by potential proposers is strongly encouraged. In addition, "NSF Update" is an information-delivery system designed to keep potential proposers and other interested parties apprised of new NSF funding.
opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Grants
Conferences. Subscribers are informed through e-mail or the user's Web browser each time new publications are issued that match
their identified interests. "NSF Update" also is available on NSF's website at

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding
opportunities may be accessed via this mechanism. Further information on Grants.gov may be obtained at http://www.grants.gov.

ABOUT THE NATIONAL SCIENCE FOUNDATION

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as
amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the
national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to
more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research
organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic
research.

NSF receives approximately 55,000 proposals each year for research, education and training projects, of which approximately 11,000
are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency
operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Arctic
and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US
participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities provide funding for special assistance or equipment to enable persons
with disabilities to work on NSF-supported projects. See Grant Proposal Guide Chapter II, Section D.2 for instructions regarding
preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities
that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general
information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.

The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding
grants and cooperative agreements for research and education in the sciences, mathematics, and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards,
visit the NSF Website at http://www.nsf.gov

◆ Location: 4201 Wilson Blvd. Arlington, VA 22230
◆ For General Information (NSF Information Center): (703) 292-5111
◆ TDD (for the hearing-impaired): (703) 292-5090
◆ To Order Publications or Forms:
 Send an e-mail to: nsfpubs@nsf.gov
 or telephone: (703) 292-7827
◆ To Locate NSF Employees: (703) 292-5111

PRIVACY ACT AND PUBLIC BURDEN STATEMENTS

The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act
of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and
project reports submitted by awardees will be used for program evaluation and reporting within the Executive Branch and to Congress.
The information requested may be disclosed to qualified reviewers and staff assistants as part of the proposal review process; to
proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration
of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to
other government agencies or other entities needing information regarding applicants or nominees as part of a joint application review
process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal
administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and
used to select potential candidates to serve as peer reviewers or advisory committee members. See Systems of Records, NSF-50,
"Principal Investigator/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004), and NSF-51,
"Reviewer/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004). Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid
Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting
burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton
Reports Clearance Officer
Office of the General Counsel
National Science Foundation
Arlington, VA 22230