SUMMARY OF PROGRAM REQUIREMENTS

General Information

Program Title:
STEM + Computing Partnerships (STEM+C)

Synopsis of Program:
The STEM+C Partnerships program seeks to significantly enhance the learning and teaching of science, technology, engineering, mathematics (STEM), and computing by K-12 students and teachers, through research on, and development of, courses, curriculum, course materials, pedagogies, instructional strategies, or models that
innovatively integrate computing into one or more STEM disciplines, or integrate STEM content into the teaching and learning of computing. In addition, STEM+C seeks to build capacity in K-12 computing education with foundational research and focused teacher preparation. Projects in the STEM+C Partnerships program should build on research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. Pre-service and in-service teachers who participate in STEM+C projects are expected to enhance their understanding and teaching of STEM and computing content, practices, and skills.

STEM+C invites creative and innovative proposals that address emerging challenges in the learning and teaching of STEM and computing. The program offers proposers two tracks: (1) Integration of Computing in STEM Education and (2) Computing Education Knowledge and Capacity Building. The second track is discipline-specific and may be expanded to include additional disciplines in future releases of the solicitation.

Cognizant Program Officer(s):

Please note that the following information is current at the time of publishing. See program website for any updates to the points of contact.

- Arlene M. de Strulle, DRL/EHR, telephone: (703) 292-8620, email: adestrul@nsf.gov
- Janice Cuny, CNS/CISE, telephone: (703) 292-8900, email: jcuny@nsf.gov
- Christopher Hoadley, DRL/EHR, telephone: (703) 292-7906, email: choadley@nsf.gov
- Paul W. Jennings, DRL/EHR, telephone: (703) 292-5307, email: pjennig@nsf.gov
- Jill L. Karsten, OAD/GEO, telephone: (703) 292-7718, email: jkarsten@nsf.gov
- Julio E. Lopez-Ferrao, DRL/EHR, telephone: 703 (292) 5183, email: jlopezfe@nsf.gov
- Teri J. Murphy, DUE/EHR, telephone: (703) 292-2109, email: tmurphy@nsf.gov
- Elizabeth L. Rom, OCE/GEO, telephone: (703) 292-7709, email: elrom@nsf.gov
- Kamau Bobb, CNS/CISE, telephone: (703) 292-4291, email: kbobb@nsf.gov
- Alphonse T. DeSena, DRL/EHR, telephone: (703) 292-5106, email: adesena@nsf.gov
- Michael A. Erlinger, DUE/EHR, telephone: (703) 292-7855, email: merlinge@nsf.gov
- David L. Haury, DUE/EHR, telephone: (703) 292-8614, email: dhaury@nsf.gov
- Margret Hjalmarson, DRL/EHR, telephone: (703) 292-4313, email: mhjalmar@nsf.gov

Applicable Catalog of Federal Domestic Assistance (CFDA) Number(s):

- 47.070 --- Computer and Information Science and Engineering
- 47.076 --- Education and Human Resources

Award Information

Anticipated Type of Award: Standard Grant or Continuing Grant

Estimated Number of Awards: 30 to 37

For FY2015, NSF expects to make 20-25 awards in Track 1 and 10-12 awards in Track 2.

Anticipated Funding Amount: $43,000,000

For FY2015, it is expected that $43 million will be allocated for new awards.

Eligibility Information

Who May Submit Proposals:

The categories of proposers eligible to submit proposals to the National Science Foundation are identified in the Grant Proposal Guide, Chapter I, Section E.

Who May Serve as PI:

There are no restrictions or limits.

Limit on Number of Proposals per Organization:

There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI: 2

An individual may serve as Principal Investigator or Co-Principal Investigator for no more than two proposals. These eligibility constraints will be strictly enforced in order to treat everyone fairly and consistently. In the event that an individual exceeds this limit, proposals received within the limit will be accepted based on earliest date and time of proposal submission (i.e., the first two proposals received will be accepted and the remainder will be returned without review). No exceptions will be made.

Proposal Preparation and Submission Instructions
A. Proposal Preparation Instructions

- **Letters of Intent:** Not required
- **Preliminary Proposal Submission:** Not required
- **Full Proposals:**

B. Budgetary Information

- **Cost Sharing Requirements:** Inclusion of voluntary committed cost sharing is prohibited.
- **Indirect Cost (F&A) Limitations:** Not Applicable
- **Other Budgetary Limitations:** Not Applicable

C. Due Dates

- **Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):**
 - April 14, 2015
 - March 08, 2016
 - Second Tuesday in March, Annually Thereafter

Proposal Review Information Criteria

Merit Review Criteria: National Science Board approved criteria apply.

Award Administration Information

Award Conditions: Additional award conditions apply. Please see the full text of this solicitation for further information.

Reporting Requirements: Standard NSF reporting requirements apply.

TABLE OF CONTENTS

Summary of Program Requirements

I. Introduction

II. Program Description

III. Award Information

IV. Eligibility Information

V. Proposal Preparation and Submission Instructions
 A. Proposal Preparation Instructions
 B. Budgetary Information
 C. Due Dates
 D. FastLane/Grants.gov Requirements

VI. NSF Proposal Processing and Review Procedures
 A. Merit Review Principles and Criteria
 B. Review and Selection Process

VII. Award Administration Information
 A. Notification of the Award
 B. Award Conditions
 C. Reporting Requirements

VIII. Agency Contacts

IX. Other Information

I. INTRODUCTION
The STEM + Computing (STEM+C) Partnerships program seeks to advance a 21st century conceptualization of education in science, technology, engineering and mathematics (STEM) that includes computing. The “+ Computing” notation emphasizes that computing is integral to the practice of all the other STEM disciplines. In this solicitation, computing refers to the whole set of fundamental concepts and skills that will allow students to creatively apply and adapt computation across a range of application domains, to “bend digital technology to one’s needs, purposes, and will.”[1]

For the purposes of this solicitation, the term computing is defined quite broadly to refer to the range of understandings, concepts, and competencies that are used in computational approaches to problem solving. It therefore includes computational thinking, computational science, data science, and as is consistent with common usage in schools, computer science.

Computing has become an integral part of the practice of modern science, math, and engineering. As a result, computational approaches are dramatically increasing our understanding of the world and ourselves, from particle physics to biological and social systems to Earth systems science. Computation is now so central to the practice of science and engineering that the President’s Information Technology Advisory Committee’s Report to the President, Computational Science: Insuring America’s Competitiveness (2005), called computation the “third pillar of scientific practice,” joining the two classical approaches of theoretical/analytical and experimental/observational. The translation of mathematical models of phenomena into computer simulations allows scientists to analyze complex systems, predict their future, on a scale far greater in complexity than previously possible. In addition, scientists now have the ability to collect, query, visualize and analyze unprecedented amounts of data. These computational capabilities are revolutionizing the science, mathematics, and engineering disciplines.

All students—but particularly STEM students—need to understand the role of computation in their lives. The report by the President’s Council of Advisors on Science and Technology, Prepare and Inspire: K-12 Science, Technology, Engineering, and Math (STEM) Education for America’s Future (2010, p.46) recommends a definition of K-12 STEM education that includes computer science, and states that students need “a deeper understanding of the essential concepts, methods and wide-ranging applications of computer science. Students should gain hands-on exposure to the process of algorithmic thinking and its realization in the form of a computer program, to the use of computational techniques for real-world problem solving, and to such pervasive computational themes as modeling and abstraction, modularity and reusability, computational efficiency, testing and debugging, and the management of complexity. Where feasible, active learning, higher-level thinking, and creative design should be encouraged by situating new concepts and techniques within the context of applications of particular interest to a given student or project team.” Currently, however, too few students have the opportunity to gain these understandings and skills in or out of school.

According to a report by the National Research Council (NRC, 2011c, p.4), there is a scarcity of research informing how to teach computational thinking in the early grades and computer science is often taught without consideration for age-appropriate learning. This report underscores that computational thinking skills are essential in the K-12 curriculum for reasons including, “succeeding in a technological society, increasing interest in the information technology professions, maintaining and enhancing U.S. economic competitiveness, supporting inquiry in other disciplines, and enabling personal empowerment.” STEM+C targets such gaps, seeking research to build the evidence base for effective pedagogy, and the design and study of appropriate and innovative interventions to make learning of computer science increasingly more relevant through contextually rich STEM-based activities.

As computing courses and curriculum are introduced across the country, it is important that computing be well-integrated into the existing STEM curricula. Students may connect to computing as a career if they can see the effectiveness of computational approaches across a range of real-world applications. Likewise, students may have a better understanding of STEM if they can see the exciting and creative modes of scientific exploration made possible by advances in computation. The nation needs a well-prepared, innovative, and globally competitive STEM workforce and there is urgency to provide a strong base for that workforce in our schools. One expectation of this work is that it will prepare more undergraduate students to confront new challenges in computational and data-enabled science and engineering.

The STEM+C Partnerships program challenges STEM educators to approach STEM education with a new lens, integrating computing as part of traditional STEM disciplinary learning and also taking advantage of the cultural assets of communities and of media to foster a stronger ecology of learning. Such integration of STEM teaching and learning may well have profound effects on the way STEM is taught—reflecting the increasing role of computational approaches in learning across the STEM disciplines, and fostering more multidisciplinary and collaborative approaches for learning in and out of school.

The STEM+C Partnerships program supports integrative efforts across one or more domains and it supports discipline specific efforts in computing. Future solicitations will seek to include additional discipline-specific foci.

II. PROGRAM DESCRIPTION

The STEM+C program is a joint research and development effort of the National Science Foundation’s Directorate for Education and Human Resources (EHR) and Directorate for Computer and Information Science and Engineering (CISE). STEM+C seeks to (1) significantly enhance the learning of science, technology, engineering, mathematics, and computing by K-12 students and teachers through research on, and development of, innovative courses, curriculum, course materials, pedagogies, strategies, or models that integrate computing into one or more STEM disciplines (Track 1), and (2) build capacity in K-12 computing education through foundational research and focused teacher preparation (Track 2).

Projects proposed for the STEM+C program should build on research in STEM education and prior research and development efforts that will provide theoretical and empirical justification. Preservice and inservice teachers who participate in STEM+C are expected to enhance their understanding and use of STEM and computing content, practices, and skills.

Eligible STEM+C Proposal Types

The program offers two Tracks: (1) Integration of Computing in STEM Education and (2) Computing Education Knowledge and Capacity Building.

Track 1: Integration of Computing in STEM Education

As computing has become an integral part of the practice of modern science, mathematics, and engineering, this track seeks proposals that will (1) integrate computing into STEM disciplinary teaching and learning, and/or (2) integrate STEM into computer science disciplinary teaching and learning. The program seeks new models for teaching and learning, innovative courses, curriculum, course materials, and the design, development, and study of potentially new pedagogical strategies. Proposers should seek to make
significant advancement in teaching and learning by leveraging as applicable, multidisciplinary collaborations across one or more STEM disciplines normally supported by NSF.

Track 1 Project Types

1. Exploratory Integration (EI): (up to $1,250,000); maximum duration two years.

Exploratory proposals might: address the development of prototypes; conduct pilot testing; study areas of practice; or conduct research to provide proof-of-concept and preliminary evidence. It is expected that some of the funded projects in this category will serve as prototypes or pilots for ideas that may be expanded in future proposals to the STEM+C Partnerships program. Proposals should include detailed information on the process for identifying, adapting or designing appropriate instruments to measure outcomes of the project, including ways to determine appropriate levels of technical quality. Exploratory proposals should be consistent with the Early Stages and Exploratory type of research and development in the Common Guidelines for Educational Research and Development.

2. Design and Development (DD): (up to $2,500,000); maximum duration three years.

Design and development proposals should build on evidence from education research and prior practice. Proposals may build upon prior work demonstrating promise in classrooms, schools, or other learning settings, or propose entirely new innovative interventions for design and testing. Projects are expected to result in a completed product ready for further research or implementation by the field. These proposals should be consistent with the Design and Development type of research and development in the Common Guidelines for Educational Research and Development.

3. Field-Building Conferences and Workshops (CW): (up to $250,000); maximum duration two years.

The program will support a small number of conferences, workshops, and special projects that lead to a better understanding of issues around the integration of STEM and computing, as expressed in the solicitation. Budgets for conferences and workshops are expected to be consistent with the duration of the event, and the number of participants. It is expected that proposed work will be outcome-based. The program encourages meetings that address emerging research and practice useful to integrating STEM and computing.

All Track 1 project types must include: a literature review that establishes the basis for the proposed study; a clear description of the alignment of research and evaluation questions with methodologies; alignment of research and evaluation with anticipated project outcomes; and a budget that clearly supports these activities. The publication, Common Guidelines for Education Research and Development, offers guidance on building the evidence base in STEM learning: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf13126.

Elements of Track 1 Proposals

Collaborations. Track 1 requires a multidisciplinary, collaborative approach that will call upon a range of expertise and research perspectives, including engagement of STEM and computing educators and researchers, as well as learning scientists, cognitive scientists, education researchers, discipline-specific teachers and faculty, educational, developmental and social psychologists, social scientists, education technologists, out of school practitioners and researchers, education media and technology developers, and representatives from business and industry. Multidisciplinary collaborations should be substantive—seeking to create innovative pedagogical solutions and strategies and research advancing both knowledge and practice of computing within STEM education and computer science. Collaborations should include expertise from computing and at least one other STEM discipline, as a basis for the work. The needs of the proposed work should drive the scope of collaboration with thought to evolving a broader ecology of learning that extends beyond the classroom, and should seek solutions for engaging teachers and students in activities that include, as examples, virtual and game-based learning, and engagement of informal STEM learning venues and/or organizations. Such expanded opportunities can potentially evolve a more seamless and robust curriculum for learning anytime, anywhere. Proposers might want to consult www.informalscience.org as a resource on informal learning and informal collaborations. Projects may consider including in their evaluation plan a study of the collaboration process itself and the effects of the collaboration on project results.

Research. Projects are required to include research advancing STEM and computing education. Discussion of the research should explicitly state the research question(s) and why such research is important in STEM, computing, and/or in the field. Projects should discuss in detail the methods used to answer research questions and/or test the hypotheses posed, along with the types of data to be collected and methods for data collection. If a population sample is used, this should be described along with the rationale for sample selection and access to the sample. The proposal should address whether the design is premised on special needs and interests due to educational level, gender, race, ethnicity, economic status, or disability, and to what extent data will be disaggregated for multiple characteristics. Proposals should include a strategy for reaching a broad audience for the findings of the project including, where appropriate, researchers in education and other fields, practitioners, and public audiences. The potential results of the proposed research are expected to be of sufficient significance to merit peer-review and broader publication. (For additional information on dissemination and communication see the resources available from the American Association for the Advancement of Science's Center for Public Engagement with Science & Technology and the Dissemination and Communication Resources available from the Center for Advancing Research & Communication.)

Intervention types. The range of anticipated projects is quite broad in this track. Projects could invent, pilot, or modify one or more STEM courses—infusing computational approaches into traditional STEM courses or infusing traditional STEM content into computer science courses, or both. Proposers might develop curriculum, course materials, assessments, pedagogy, or new foci for pre-service and inservice teacher preparation. Projects could: identify practices for working with datasets and iteratively refine models; develop competencies for student analysis, interpretation, and synthesis of data and self-made discoveries using scientific visualizations for instruction; and/or study engagement in collaborative learning methods. Proposers could use types of media, technologies, and/or design new tools to create, build, and invent products or computational solutions to domain-specific problems, including interventions needed for learning in and out of school. Products and tools might engage learners in reasoning, systems thinking, and understanding of scientific models, simulations, and visualizations that depict phenomena. As noted above, the range of anticipated projects is quite broad; however, common to each project is that it should articulate research questions, the importance of the research to the field, formative and summative assessment, and data collection that, in aggregate, will provide evidence-based insights to inform and advance the field.

Teacher Preparation. The preparation of future teachers who can effectively facilitate students’ computational learning and thinking, and cultivate an interest in pursuing STEM and computing careers is essential to the Nation. Projects can engage two- and four-year institutions to improve prospective teachers' understanding of computation and computational thinking sufficient to engage Pre-K-12 students in real world science and engineering problems. Projects are expected to build on the extensive research literature on teacher preparation. The evaluation must measure the effectiveness of efforts to enhance teachers’ ability to improve the computational understanding of their students in STEM disciplines.

Examples of research topics applicable to Track 1 are indicated below. Proposers are encouraged to also consider other research topics:
• How do students acquire skills in the use of computing methods and computational ways of knowing within the Pre-K-12 learning environment?
• What are the powerful strategies and resources for developing computing skills within the context of specific STEM disciplines for both teachers and students? How do strategies need to be modified for different disciplines?
• What formal and informal learning strategies and models are most effective for making computing more inclusive for diverse student communities as they acquire skills?
• Under what conditions is integrating specific STEM content in computer science curricula effective as a strategy to improve student engagement, improve acquisition of computing skills, and/or broaden participation of women and minorities in computer science?
• To what extent does taking STEM-relevant computer science courses increase student interest, motivation, persistence, and performance in other STEM fields?
• What professional development models are most effective for preparing teachers to cultivate computing skills?

Project evaluation. Proposals must include a strategy for objective external review and feedback processes, including theoretical frameworks, any data collection plans, analysis plans, and reporting plans. Objective external feedback can be provided through an advisory board or through an independent external evaluator outside the proposing institution or in different organizational units than the PIs and Co-PIs. The external critical review or evaluation should be sufficiently independent and rigorous to influence the project's activities, formatively, and improve the quality of its findings. Proposals should: (1) describe the expertise of the external reviewer(s); (2) explain how that expertise relates to the goals and objectives of the proposal; and (3) specify how the PI will report and use results of the project’s external, critical review process. Proposals must provide for a formative and summative evaluation that includes assessments of student/teacher learning outcomes and attitudinal changes, as appropriate. Further information and guidance on evaluation can be found in the publication, Common Guidelines for Education Research and Development: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf13126.

Track 2: Computing Education Knowledge and Capacity Building

In recognition of the fact that computing has a low presence in K-12, this track supports discipline specific efforts in computing. These efforts should be designed to (1) build an evidence base for the teaching and learning of computing in K-12 within diverse populations or (2) create scalable models for teacher professional development and sustainable, ongoing teacher support. Proposed efforts should have a strong theoretical and/or empirical rationale informed by the current literature.

Additional, domain-specific tracks may be added in future releases of the solicitation.

Track 2 Project Types

1. Research on Education and Broadening Participation Projects (EBP): (up to $600,000 maximum); duration three years.

These projects focus on foundational research on the teaching and learning of computing. Specifically, this track aims to build an evidence base on how diverse K-12 student populations are engaged and retained, how they learn fundamental computational concepts, and how they develop the computational competencies needed to pursue degree programs in computing-related and computationally intensive fields of study. The research results could be relevant to teacher preparation or student learning in K-12 computer science courses, or infused across the K-12 STEM curricula, in formal or informal settings.

Research on Education and Broadening Participation projects must include a literature review that establishes the basis for the proposed study; a clear description of the alignment of research and evaluation questions with methodologies; and alignment of research and evaluation with anticipated project outcomes. The publication, Common Guidelines for Education Research and Development, offers guidance on building an evidence base for teaching and learning: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=nsf13126.

2. CS 10K (CS10K): (up to $1,000,000); duration three years.

Projects from this track will develop the knowledge and evidence-based foundation needed to prepare teachers for the CS 10K Project[2], which aims to have rigorous, academic computing courses taught in 10,000 high schools by 10,000 well-prepared teachers. CS 10K proposals will focus on high school computer science teachers, providing preservice and inservice teachers with courses, professional development, and ongoing support. Proposals must focus on efforts that enable teachers to successfully offer either or both of two new courses: Exploring Computer Science (ECS) or the new Advanced Placement (AP) CS Principles; see ExploringCS.org and CSPrinciples.org.

Elements of Track 2 Proposals

Collaborations. The proposing team for these proposals must include expertise appropriate to the project. In most cases, this will require discipline-specific expertise in computing from teachers and faculty, combined with expertise in educational research, learning sciences, cognitive science, developmental and social psychology, and/or the social sciences. The proposing team for these proposals must include expertise in educational research, learning sciences and/or issues of underrepresentation that is sufficient for the proposed work.

Attention to diversity. To ensure that advances in computing education are inclusive of our diverse student populations, all Track 2 proposals must address, as a significant component, the longstanding underrepresentation in computing of women, persons with disabilities, African Americans, Hispanics, Native Americans, and indigenous peoples. It will not be considered sufficient, for example, to situate the work in schools with a high minority enrollment, or to include a member of an underrepresented group on the project team, or to propose interventions that appeal to “all students.” While these are all potentially strong aspects of any proposal, successful Track 2 proposals will likely also describe the demographics of their target audience, demonstrate knowledge of the relevant literature on underrepresentation and awareness of best practices and related efforts, have a concrete plan for improving representation, and have clear metrics and methodologies for documenting outcomes. Data gathered in all proposals must be disaggregated by gender and ethnicity.

Research. All of the Research on Education and Broadening Participation proposals must focus on research. CS 10K proposers are encouraged to include a research component.

Research components must include a discussion of the education research grounding the proposed work, and well-focused research questions and/or testable hypotheses. Consistent with the Common Guidelines, rigorous qualitative, quantitative, or mixed methods approaches are welcome. The proposal should discuss in detail the methods used to answer the research questions and/or test the hypotheses posed, along with the types of data to be collected and methods for data collection. If a population sample is used, this should be described along with the rationale for sample selection and access to the sample. The proposal should address whether the design is premised on special needs and interests due to educational level, gender, race, ethnicity, economic status, or
disability, and to what extent data will be disaggregated for multiple characteristics. Proposals should include a strategy for reaching a broad audience for the findings of the project including, where appropriate, researchers in education and other fields, practitioners, and public audiences. (For additional information on dissemination and communication see the resources available from the American Association for the Advancement of Science’s Center for Public Engagement with Science & Technology and the Dissemination and Communication Resources available from the Center for Advancing Research & Communication.)

Possible Research on Education and Broadening Participation topics include:

- What strategies and resources are most effective in teaching computer science concepts and skills? How can these strategies be sequenced across K-12 education?
- How can we best serve diverse student communities in learning computing?
- To what extent does taking computer science courses improve students’ quantitative, spatial, and/or systems thinking skills? Team persistence in problems of self-efficacy? How do the perceptions of students’ persistence in problems of self-efficacy differ based on gender, race, and other characteristics?
- What professional development models are most effective for preparing teachers to create computing skills and ways of knowing by students? What factors contribute to successful scaling of effective models? How do methods need to be modified for teachers who start with different backgrounds? What types of ongoing support are necessary for sustained success in student learning or teacher effectiveness?

Teacher Preparation. Proposals can focus on a wide range of activities in support of teaching; for CS10K projects the activities must support the teaching of ECS or CS Principles. Possible activities, include, for example, local accommodations to either the ECS or CS Principles curricula, advances to pedagogy or teaching practices, introduction of methods courses for pre-service teachers and/or teacher certification programs, creation and evaluation of mechanisms for providing scalable professional development including online modalities, and development of sustainable ongoing support for teachers. Projects are expected to build on the extensive research literature on teacher preparation. Proposals may include an evaluation component to measure the effectiveness of their proposed interventions, and CS 10K awardees will be required to participate in the program-wide CS 10K evaluation. In addition, PIs are encouraged to include a research component, as described above, looking at questions, such as:

- What professional development models are most effective for preparing teachers to cultivate computing skills and ways of knowing within students? How do they scale?
- What strategies for teacher preparation are most effective for teachers from diverse backgrounds?
- What types of follow-up learning may be needed to build upon and enhance achievements made through teacher professional development models?

Evaluation. Track 2 proposals that include an intervention (some Research on Education and Broadening Participation in Computing and most CS10K projects) must provide for a formative and summative evaluation of that intervention that includes assessments of student/teacher learning outcomes and attitudinal changes as appropriate. The evaluation should be designed and performed by an independent evaluator, though data collection and routine tasks are acceptable to be carried out by other members of the project team. In most cases, the independent evaluator will be from outside the proposing institution, or at least from a different organizational unit than the PIs and Co-PIs. Collected data must be disaggregated by gender, ethnicity, socio-economic status, and disability unless precluded by state or local laws. For further information on evaluation, proposers may want to consult the 2010 User Friendly Handbook for Project Evaluation (https://www.westat.com/sites/westat.com/files/2010UFHB.pdf) and other resources.

Suggested Bibliography

President’s Council of Advisors on Science and Technology (PCASE, 2010) Prepare and Inspire: K-12 Education in Science, Technology, Engineering, and Math (STEM) for America’s Future. White House Office of Science and Technology Policy (OSTP), Washington, DC. http://www.whitehouse.gov/administration/eop/ostp/pcast/docs/reports

III. AWARD INFORMATION

The maximum total budget for Track 1: Integration of Computing in STEM Education awards is $2.5 million for Design and Development awards, $1.25 million for Exploratory Integration awards, and $250,000 for Field-Building Conferences and Workshops. The maximum total budget for Track 2: Computing Education Knowledge and Capacity Building awards is $600,000 for Research on Education and Broadening Participation awards and $1.0 million for CS 10K awards. NSF is interested in models of varying scales and scope with potential for national significance; the funds requested should be commensurate with the scale and scope of the proposed work.

IV. ELIGIBILITY INFORMATION

Who May Submit Proposals:

The categories of proposers eligible to submit proposals to the National Science Foundation are identified in the Grant Proposal Guide, Chapter I, Section E.

Who May Serve as PI:

There are no restrictions or limits.

Limit on Number of Proposals per Organization:

There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI: 2

An individual may serve as Principal Investigator or Co-Principal Investigator for no more than two proposals. These eligibility constraints will be strictly enforced in order to treat everyone fairly and consistently. In the event that an individual exceeds this limit, proposals received within the limit will be accepted based on earliest date and time of proposal submission (i.e., the first two proposals received will be accepted and the remainder will be returned without review). No exceptions will be made.

Additional Eligibility Info:

Collaborative proposals: Any proposal submitted in response to this solicitation should be a single submission with support for all collaborators requesting funding from NSF done via subaward. Separately submitted collaborative proposals, as defined in the NSF Grant Proposal Guide (Chapter II, Section D.5 Collaborative Proposals), will be returned without review.

V. PROPOSAL PREPARATION AND SUBMISSION INSTRUCTIONS

A. Proposal Preparation Instructions

Full Proposal Preparation Instructions: Proposers may opt to submit proposals in response to this Program Solicitation via Grants.gov or via the NSF FastLane system.

* Full proposals submitted via FastLane: Proposals submitted in response to this program solicitation should be prepared and submitted in accordance with the general guidelines contained in the NSF Grant Proposal Guide (GPG). The complete text of the GPG is available electronically on the NSF website at: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=gpg. Paper copies of the GPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov. Proposers are reminded to identify this program solicitation number in the program solicitation block on the NSF Cover Sheet For Proposal to the National Science Foundation. Compliance with this requirement is critical to determining the relevant proposal processing guidelines. Failure to submit this information may delay processing.

* Full proposals submitted via Grants.gov: Proposals submitted in response to this program solicitation via Grants.gov should be prepared and submitted in accordance with the NSF Grants.gov Application Guide: A Guide for the Preparation and Submission of NSF Applications via Grants.gov. The complete text of the NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: (http://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide). To obtain copies of the Application Guide and Application Forms Package, click on the Apply tab on the Grants.gov site, then click on the Apply Step 1: Download a Grant Application Package and Application Instructions link and enter the funding opportunity number, (the program solicitation number without the NSF prefix) and press the Download Package button. Paper copies of the Grants.gov Application Guide also may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.
See Chapter II.C.2 of the GPG for guidance on the required sections of a full research proposal submitted to NSF. Please note that the proposal preparation instructions provided in this program solicitation may deviate from the GPG instructions.

Important Proposal Preparation Information:

The following instructions supplement guidelines in the GPG and Grants.gov Application Guide:

COVER SHEET PAGE

1. NSF UNIT CONSIDERATION DESIGNATION
 1. Select the program solicitation number on the Cover Sheet
 2. Select the “NSF Unit of Consideration”
 3. Grants.gov Users: The program solicitation number will be pre-populated by Grants.gov on the NSF Grant Application Cover Page. Grants.gov users should refer to Section VI.1.2. of the NSF Grants.gov Application Guide for specific instructions on how to designate the NSF Unit of Consideration.

2. TITLE
 The Title of the proposal must be prefixed with either "Track 1" or "Track 2" and a tag that specifies its Project Type followed by a colon, for example:
 - Exploratory Integration is “EI:"
 - Design and Development is “DD:"
 - Conferences and Workshops is “CW:"
 - Research on Education and Broadening Participation Projects is “EBP:"
 - CS 10K is "CS10K:"

3. HUMAN SUBJECTS BOX:
 Mark the Human Subjects box as pending, approved, or exempted (with exemption subsection indicated). This box should not be left blank. The Human Subjects box should be marked as pending if an IRB is either (1) reviewing the project plan and has not yet determined a ruling of "approved" or "exempt", or (2) the project plan has not yet been submitted to an IRB for review.

Projects involving research with human subjects, or the reporting of information gathered from human subjects, must ensure that subjects are protected in conformance with the relevant federal policy known as the Common Rule (Federal Policy for the Protection of Human Subjects, 45 CFR 690). All projects involving human subjects must either (1) have approval from the organization’s Institutional Review Board (IRB) before issuance of an NSF award or, (2) must affirm that the IRB or an appropriate knowledgeable authority previously designated by the organization (not the Principal Investigator) has declared the research exempt from IRB review, in accordance with the applicable subsection, as established in section 101(b) of the Common Rule. If the box for Human Subjects is checked on the Cover Sheet along with either (1) the IRB approval date or (2) the exemption subsection from the Common Rule identified, then no additional certification is required. In the event the proposal is recommended for funding and IRB review is pending, certification of IRB approval or exemption should be submitted to NSF in electronic form as soon as it is available. Delays in obtaining IRB certification may result in NSF being unable to make an award. For more information regarding the protection of human subjects, consult: http://www.nsf.gov/bfa/dias/policy/human.jsp.

PROJECT SUMMARY PAGE

Each proposal must submit a one-page summary of the project. The Project Summary should be written in the third person. As part of NSF’s effort to implement automated compliance checking, the project summary section now includes three text boxes (Overview, Intellectual Merit, and Broader Impacts) and information must be entered into all three text boxes or the proposal will not be accepted by NSF.

(1) Overview:
 - Title of the proposed project.
 - Name of the lead and any supporting partners or collaborators.
 - Indicate the project Track and Type
 - Include a brief description of the project vision, goals, and work.
 - Include, where applicable, number of teachers to be directly engaged, number of new teachers to be prepared, and number of students (including grade ranges) who will be engaged and/or benefit from the proposed work.

(2) Intellectual Merit:
 - The statement on intellectual merit should describe the potential of the proposed activity to advance knowledge.

(3) Broader Impacts:
 - The statement on broader impacts should describe the potential of the proposed activity to benefit society and contribute to the achievement of specific, desired societal outcomes.

B. Budgetary Information

Cost Sharing: Inclusion of voluntary committed cost sharing is prohibited.

Budget Preparation Instructions:

All projects should expect to participate in NSF PI conferences (both face-to-face and online), and data collection and evaluation processes required by the program. Proposers should budget for one trip to a PI meeting per year.

C. Due Dates

- Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):
 April 14, 2015
D. FastLane/Grants.gov Requirements

For Proposals Submitted Via FastLane:

To prepare and submit a proposal via FastLane, see detailed technical instructions available at: https://www.fastlane.nsf.gov/a1/newstan.htm. For FastLane user support, call the FastLane Help Desk at 1-800-673-6188 or e-mail fastlane@nsf.gov. The FastLane Help Desk answers general technical questions related to the use of the FastLane system. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this funding opportunity.

For Proposals Submitted Via Grants.gov:

Before using Grants.gov for the first time, each organization must register to create an institutional profile. Once registered, the applicant's organization can then apply for any federal grant on the Grants.gov website. Comprehensive information about using Grants.gov is available on the Grants.gov Applicant Resources webpage: http://www.grants.gov/web/grants/applicants.html. In addition, the NSF Grants.gov Application Guide (see link in Section V.A) provides instructions regarding the technical preparation of proposals via Grants.gov. For Grants.gov user support, contact the Grants.gov Contact Center at 1-800-518-4726 or by email: support@grants.gov. The Grants.gov Contact Center answers general technical questions related to the use of Grants.gov. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this solicitation.

Submitting the Proposal: Once all documents have been completed, the Authorized Organizational Representative (AOR) must submit the application to Grants.gov and verify the desired funding opportunity and agency to which the application is submitted. The AOR must then sign and submit the application to Grants.gov. The completed application will be transferred to the NSF FastLane system for further processing.

Proposers that submitted via FastLane are strongly encouraged to use FastLane to verify the status of their submission to NSF. For proposers that submitted via Grants.gov, until an application has been received and validated by NSF, the Authorized Organizational Representative may check the status of an application on Grants.gov. After proposers have received an e-mail notification from NSF, Research.gov should be used to check the status of an application.

VI. NSF PROPOSAL PROCESSING AND REVIEW PROCEDURES

Proposals received by NSF are assigned to the appropriate NSF program for acknowledgement and, if they meet NSF requirements, for review. All proposals are carefully reviewed by a scientist, engineer, or educator serving as an NSF Program Officer, and usually by three to ten other persons outside NSF either as ad hoc reviewers, panelists, or both, who are experts in the particular fields represented by the proposal. These reviewers are selected by Program Officers charged with oversight of the review process. Proposers are invited to suggest names of persons they believe are especially well qualified to review the proposal and/or persons they would prefer not review the proposal. These suggestions may serve as one source in the reviewer selection process at the Program Officer's discretion. Submission of such names, however, is optional. Care is taken to ensure that reviewers have no conflicts of interest with the proposal. In addition, Program Officers may obtain comments from site visits before recommending final action on proposals. Senior NSF staff further review recommendations for awards. A flowchart that depicts the entire NSF proposal and award process (and associated timeline) is included in the GPG as Exhibit III-1.

A comprehensive description of the Foundation's merit review process is available on the NSF website at: http://nsf.gov/bfa/dias/policy/merit_review/.

Proposers should also be aware of core strategies that are essential to the fulfillment of NSF's mission, as articulated in Investing in Science, Engineering, and Education for the Nation's Future: NSF Strategic Plan for 2014-2018. These strategies are integrated in the program planning and implementation process, of which proposal review is one part. NSF's mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

One of the strategic objectives in support of NSF’s mission is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions. These institutions must recruit, train, and prepare a diverse STEM workforce to advance the frontiers of science and participate in the U.S. technology-based economy. NSF's contribution to the national innovation ecosystem is to provide cutting-edge research under the guidance of the Nation's most creative scientists and engineers. NSF also supports development of a strong science, technology, engineering, and mathematics (STEM) workforce by investing in building the knowledge that informs improvements in STEM teaching and learning.

NSF’s mission calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions that are underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF’s mission “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes.” NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles
Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants
and Agreements for review of business, financial, and policy implications. After an administrative review has occurred, Grants and
After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants
Officer's recommendation.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to
 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the
 plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed activities?
5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the
 proposed activities?

Broader impacts may be accomplished through the research itself, through activities that are directly related to specific research
projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific
knowledge and activities that contribute to achievement of societal relevant outcomes. Such outcomes include, but are not limited
to: full participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and
mathematics (STEM); improved STEM education and educator development at any level; increased public scientific literacy and
public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally
competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security; increased
economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management Plan and the Postdoctoral Researcher
Mentoring Plan, as appropriate.

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by Panel Review.

Reviewers will be asked to evaluate proposals using two National Science Board approved merit review criteria and, if applicable,
additional program specific criteria. A summary rating and accompanying narrative will be completed and submitted by each
reviewer. The Program Officer assigned to manage the proposal's review will consider the advice of reviewers and will formulate a
recommendation.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to
the cognizant Division Director whether the proposal should be declined or recommended for award. NSF strives to be able to tell
applicants whether their proposals have been declined or recommended for funding within six months. Large or particularly complex
proposals or proposals from new awardees may require additional review and processing time. The time interval begins on the
deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director acts upon the Program
Officer's recommendation.

After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants
and Agreements for review of business, financial, and policy implications. After an administrative review has occurred, Grants and
Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated
level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects
should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document
the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the
criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances,
however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration during the review and decision-

taking processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both
criteria. (GPG Chapter II.C.2.d.i. contains additional information for use by proposers in development of the Project Description
section of the proposal.) Reviewers are strongly encouraged to review the criteria, including GPG Chapter II.C.2.d.i., prior to the
review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how
they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply
both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end,
reviewers will be asked to evaluate all proposals against two criteria:

- **Intellectual Merit:** The Intellectual Merit criterion encompasses the potential to advance knowledge; and
- **Broader Impacts:** The Broader Impacts criterion encompasses the potential to benefit society and contribute to the
 achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

- **Intellectual Merit:** The Intellectual Merit criterion encompasses the potential to advance knowledge; and
- **Broader Impacts:** The Broader Impacts criterion encompasses the potential to benefit society and contribute to the
 achievement of specific, desired societal outcomes.

These Principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by
reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend
proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and
supporting excellence in basic research and education, the following three principles apply:

- All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of
 knowledge.
- NSF projects, in the aggregate, should contribute more broadly to advancing societal goals. These “Broader Impacts” may be
 accomplished through the research itself, through activities that are directly related to specific research projects, or through
 activities that are supported by, but are complementary to, the project. The project activities may be based on previously
 established and/or innovative methods and approaches, but in either case must be well justified.
- Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the
 likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the
 activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of
 these activities may best be done at a higher, more aggregated, level than the individual project.
and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.

Once an award or declination decision has been made, Principal Investigators are provided feedback about their proposals. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers or any reviewer-identifying information, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or decline funding.

VII. AWARD ADMINISTRATION INFORMATION

A. Notification of the Award

Notification of the award is made to the submitting organization by a Grants Officer in the Division of Grants and Agreements. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process).

B. Award Conditions

An NSF award consists of: (1) the award notice, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award notice; (4) the applicable award conditions, such as Grant General Conditions (GC-1); or Research Terms and Conditions* and (5) any announcement or other NSF issuance that may be incorporated by reference in the award notice. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF’s Website at http://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF. Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

Special Award Conditions:

All STEM+C Partnerships awardees are required to participate in PI meetings and data collection efforts as requested by the program, including dissemination of research findings and project results on MSPNet.org and the Research+Practice Collaboratory.

Track 1: As new mechanisms emerge in the STEM+C program to aggregate data on project results, awardees will be asked to contribute to such data collection to assess the program, advance knowledge, and inform the field.

Track 2: Awardees will be required to keep the CISE Broadening Participation and Education Community apprised of their work by participating in PI/Community meetings and by maintaining up-to-date websites. For CS 10K projects, project websites must be linked through the CS 10K Community of Practice (cs10kcommunity.org).

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer at least 90 days prior to the end of the current budget period. (Some programs or awards require submission of more frequent project reports). Within 90 days following expiration of a grant, the PI also is required to submit a final project report, and a project outcomes report for the general public.

Failure to provide the required annual or final project reports, or the project outcomes report, will delay NSF review and processing of any future funding increments as well as any pending proposals for all identified PIs and co-PIs on a given award. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF’s electronic project-reporting system, available through Research.gov, for preparation and submission of annual and final project reports. Such reports provide information on accomplishments, project participants (individual and organizational), publications, and other specific products and impacts of the project. Submission of the report via Research.gov constitutes certification by the PI that the contents of the report are accurate and complete. The project outcomes report also must be prepared and submitted using Research.gov. This report serves as a brief summary, prepared specifically for the public, of the nature and outcomes of the project. This report will be posted on the NSF website exactly as it is submitted by the PI.

VIII. AGENCY CONTACTS

Please note that the program contact information is current at the time of publishing. See program website for any updates to the
points of contact.

General inquiries regarding this program should be made to:

- Arlene M. de Strulle, DRL/EHR, telephone: (703) 292-8620, email: adestrul@nsf.gov
- Janice Cuny, CNS/CISE, telephone: (703) 292-8900, email: jcuny@nsf.gov
- Christopher Hoadley, DRL/EHR, telephone: (703) 292-7906, email: choadley@nsf.gov
- Paul W. Jennings, DRL/EHR, telephone: (703) 292-5307, email: pjennings@nsf.gov
- Jill L. Karsten, OAD/GEO, telephone: (703) 292-7718, email: jkarsten@nsf.gov
- Julio E. Lopez-Ferrao, DRL/EHR, telephone: (703) 292-5183, email: jlopezfe@nsf.gov
- Teri J. Murphy, DUE/EHR, telephone: (703) 292-2109, email: tmurphy@nsf.gov
- Elizabeth L. Rom, OCE/GEO, telephone: (703) 292-7709, email: elrom@nsf.gov
- Kamau Bobb, CNS/CISE, telephone: (703) 292-4291, email: kbobb@nsf.gov
- Alphonse T. DeSena, DRL/EHR, telephone: (703) 292-5106, email: adesena@nsf.gov
- Michael A. Erlinger, DUE/EHR, telephone: (703) 292-7855, email: merlinge@nsf.gov
- David L. Haury, DUE/EHR, telephone: (703) 292-8614, email: dhaury@nsf.gov
- Margret Hjalmarson, DRL/EHR, telephone: (703) 292-4313, email: mhjalmar@nsf.gov

For questions related to the use of FastLane, contact:

- FastLane Help Desk, telephone: 1-800-673-6188; e-mail: fastlane@nsf.gov.

For questions relating to Grants.gov contact:

- Grants.gov Contact Center: If the Authorized Organizational Representatives (AOR) has not received a confirmation message from Grants.gov within 48 hours of submission of application, please contact via telephone: 1-800-518-4726; e-mail: support@grants.gov.

IX. OTHER INFORMATION

The NSF website provides the most comprehensive source of information on NSF Directorates (including contact information), programs and funding opportunities. Use of this website by potential proposers is strongly encouraged. In addition, "NSF Update" is an information-delivery system designed to keep potential proposers and other interested parties apprised of new NSF funding opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Grants Conferences. Subscribers are informed through e-mail or the user's Web browser each time new publications are issued that match their identified interests. "NSF Update" also is available on NSF's website at https://public.govdelivery.com/accounts/USNSF/subscriber/new?topic_id=USNSF_179.

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding opportunities may be accessed via this mechanism. Further information on Grants.gov may be obtained at http://www.grants.gov.

ABOUT THE NATIONAL SCIENCE FOUNDATION

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic research.

NSF receives approximately 55,000 proposals each year for research, education and training projects, of which approximately 11,000 are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Arctic and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities provide funding for special assistance or equipment to enable persons with disabilities to work on NSF-supported projects. See Grant Proposal Guide Chapter II, Section D.2 for instructions regarding preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.
The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants and cooperative agreements for research and education in the sciences, mathematics, and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Website at http://www.nsf.gov

- Location: 4201 Wilson Blvd. Arlington, VA 22230
- For General Information (NSF Information Center): (703) 292-5111
- TDD (for the hearing-impaired): (703) 292-5090
- To Order Publications or Forms:
 - Send an e-mail to: nsfpubs@nsf.gov
 - or telephone: (703) 292-7827
- To Locate NSF Employees: (703) 292-5111

PRIVACY ACT AND PUBLIC BURDEN STATEMENTS

The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and project reports submitted by awardees will be used for program evaluation and reporting within the Executive Branch and to Congress. The information requested may be disclosed to qualified reviewers and staff assistants as part of the proposal review process; to proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to other government agencies or other entities needing information regarding applicants or nominees as part of a joint application review process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and used to select potential candidates to serve as peer reviewers or advisory committee members. See Systems of Records, NSF-50, “Principal Investigator/Proposal File and Associated Records,” 69 Federal Register 26410 (May 12, 2004), and NSF-51, “Reviewer/Proposal File and Associated Records,” 69 Federal Register 26410 (May 12, 2004). Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton
Reports Clearance Officer
Office of the General Counsel
National Science Foundation
Arlington, VA 22230