This solicitation has been archived.

Exploiting Parallelism and Scalability (XPS)

PROGRAM SOLICITATION
NSF 16-507

REPLACES DOCUMENT(S):
NSF 15-511

Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):
January 19, 2016

IMPORTANT INFORMATION AND REVISION NOTES

This solicitation has been revised from NSF 15-511 as follows:

a. Slightly revised Synopsis of Program.
b. Updated list of Cognizant Program Officer(s).
c. Streamlined Introduction (Section I) and Program Description (Section II) taking into account the report from the XPS PI meeting (June 2015) and recent National Strategic Computing Initiative (NSCI). For clarity, Section II is now divided into subsections.
d. Clarified handling of duplicate or near-duplicate proposals in the Eligibility Information (Section IV).
e. Streamlined Proposal Preparation Instructions (Section V.A.).
f. Updated Agency Contacts (Section VIII) (as in b above).

Any proposal submitted in response to this solicitation should be submitted in accordance with the current NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 15-1).

SUMMARY OF PROGRAM REQUIREMENTS

General Information

Program Title:
Exploiting Parallelism and Scalability (XPS)

Synopsis of Program:

Computing systems have undergone a fundamental transformation from the single-core processor-devices of the turn of the century to today's ubiquitous and networked-devices with multicore/many-core processors along with warehouse-scale computing via the cloud. At the same time, semiconductor technology is facing fundamental physical limits and single-processor performance has plateaued. This means that the ability to achieve predictable performance improvements through improved processor technologies alone has ended. Thus, parallelism has become critically important.

The Exploiting Parallelism and Scalability (XPS) program aims to support groundbreaking research leading to a new era of parallel computing. Achieving the needed breakthroughs will require a collaborative effort among researchers representing all areas -- from services and applications down to the micro-architecture -- and will be built on new concepts, theories, and foundational principles. New approaches to achieving scalable performance and usability need new abstract models and algorithms, new programming models and languages, and new hardware architectures, compilers, operating systems and run-time systems, and must exploit domain and application-specific knowledge. Research is also needed on energy efficiency, communication efficiency, and on enabling the division of effort between edge devices and clouds.

Cognizant Program Officer(s):

Please note that the following information is current at the time of publishing. See program website for any updates to the points of contact.

- Anindya Banerjee, CISE/CCF, telephone: (703) 292-7885, email: abanerje@nsf.gov
- Tracy Kimbrel, CISE/CCF, telephone: (703) 292-7924, email: tkimbrel@nsf.gov
- Tao Li, CISE/CCF, telephone: (703) 292-8238, email: taoli@nsf.gov
Applicable Catalog of Federal Domestic Assistance (CFDA) Number(s):

- 47.070 --- Computer and Information Science and Engineering

Award Information

Anticipated Type of Award: Standard Grant or Continuing Grant

Estimated Number of Awards: 16 to 21

Approximately 3-5 EXPLORATORY awards for up to 3 years and up to $300,000 per award, and 13-16 FULL-SIZE awards for up to 4 years and up to $1,000,000 per award are anticipated, subject to availability of funds.

Anticipated Funding Amount: $14,000,000

subject to availability of funds.

Eligibility Information

Who May Submit Proposals:

The categories of proposers eligible to submit proposals to the National Science Foundation are identified in the Grant Proposal Guide, Chapter I, Section E.

Who May Serve as PI:

Each FULL-SIZE proposal is required to have two or more PIs providing different and distinct expertise relevant to the program's focus areas. More details are available in Section V.A. Proposal Preparation Instructions.

Limit on Number of Proposals per Organization:

There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI: 2

An investigator may participate as PI, co-PI, or senior personnel in no more than two proposals submitted in response to this solicitation.

In the event that an individual exceeds this limit, proposals will be accepted based on earliest date and time of proposal submission. That is, the first two proposals received will be accepted and the remainder will be returned without review. No exceptions will be made.

Proposals submitted in response to this solicitation may not duplicate or be substantially similar to other proposals concurrently under consideration by NSF.

Proposal Preparation and Submission Instructions

A. Proposal Preparation Instructions

- **Letters of Intent:** Not required

- **Preliminary Proposal Submission:** Not required

- **Full Proposals:**

B. Budgetary Information

- **Cost Sharing Requirements:** Inclusion of voluntary committed cost sharing is prohibited.

- **Indirect Cost (F&A) Limitations:** Not Applicable

- **Other Budgetary Limitations:** Other budgetary limitations apply. Please see the full text of this solicitation for further information.

C. Due Dates

- **Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):**

 January 19, 2016
Proposal Review Information Criteria

Merit Review Criteria: National Science Board approved criteria apply.

Award Administration Information

Award Conditions: Standard NSF award conditions apply.
Reporting Requirements: Standard NSF reporting requirements apply.

TABLE OF CONTENTS

Summary of Program Requirements

I. Introduction

II. Program Description

III. Award Information

IV. Eligibility Information

V. Proposal Preparation and Submission Instructions
 A. Proposal Preparation Instructions
 B. Budgetary Information
 C. Due Dates
 D. FastLane/Grants.gov Requirements

VI. NSF Proposal Processing and Review Procedures
 A. Merit Review Principles and Criteria
 B. Review and Selection Process

VII. Award Administration Information
 A. Notification of the Award
 B. Award Conditions
 C. Reporting Requirements

VIII. Agency Contacts

IX. Other Information

I. INTRODUCTION

Computing systems have undergone a fundamental transformation from the relatively isolated single-processor devices of the turn of the century to today's ubiquitous and networked devices, warehouse-scale computing via the cloud, and exascale high-performance computing (HPC) systems that increasingly are expected to process and analyze exabytes of data. Parallelism has become critically important at many levels, from the underlying circuits to the globally shared infrastructure of the Internet. Intermediate levels include cores with pipelining and instruction level parallelism, chips as well as machines with multiple cores, racks with multiple machines, and data centers with many racks. Multi- and many-core processors, ever-increasing numbers and variety of edge devices (e.g., Internet of Things), the data centers servicing them, and the software environments harnessing these resources comprise a new cyberinfrastructure that enables a new set of globally distributed applications with tremendous economic and social impact. These applications include, but are not limited to, computation- and data-intensive science applications, personalized healthcare, human network analytics, disaster preparation and response, business intelligence, novel HPC cloud architectures for data analytics, and machine learning and big data applications.

At the same time, a main driver of continued performance improvement is ending: semiconductor technology is facing fundamental physical limits and single-processor performance has plateaued. Two reports, "21st Century Computer Architecture" commissioned by the Computing Community Consortium in 2012 (http://cra.org/ccc/wp-content/uploads/sites/2/2015/05/21stcenturyarchitecturewhitepaper.pdf) and the 2011 National Research Council report "The Future of Computing Performance: Game Over or Next Level?" (http://www.nap.edu/openbook.php?record_id=12080) highlight this development and its impact on science, the economy, and society. The reports pose the question of how to enable the computational systems that will support emerging applications without the benefit of near-perfect performance scaling (termed Dennard scaling) from hardware improvements. Although Moore's law may produce another few generations of smaller transistors, the end of Dennard scaling means that smaller transistors do not necessarily improve performance or energy efficiency. NSF's Advanced Computing Infrastructure: Vision and Strategic Plan (http://www.nsf.gov/pubs/2012/nsf12051/nsf12051.pdf) published in February 2012 describes strategies that address this challenge for NSF and the research community. Furthermore, the National Strategic Computing Initiative (NSCI) (https://www.federalregister.gov/articles/2015/08/03/2015-19183/creating-a-national-strategic-computing-initiative) outlines the need to establish "over the next 15 years, a viable path forward for future high-performance computing (HPC) systems even after the limits of current semiconductor technology are reached (the "post-Moore's Law era").

To continue improving performance and to support the move of parallelism to applications at multiple levels from mobile devices to desktops to exascale systems and the cloud, we need a new era of parallel computing, driven by novel, groundbreaking research in all areas impacting parallel performance and scalability. Achieving the needed breakthroughs will require a collaborative, cross-layer effort among researchers representing all areas from the application layer down to the micro-architecture, and will be built on new
concepts and new foundational principles. Vertical integration, that is, tight linking between researchers in two or more layers of the hardware-software stack, is critical as abstraction layers evolve in two directions -- bottom-up (driven by foundations and principles) and top-down (driven by applications). Such cross-layer integration is more likely to yield consistent and coherent outcomes from these simultaneous evolutions. Thus the XPS program seeks collaborations combining, for example, a deep understanding in parallel programming with expertise in software tools; experience in heterogeneous parallel architectures with algorithm design expertise; experience and discovery in emerging substrate technologies with architecture and systems design; knowledge in an application domain with expertise in energy-efficient memory hierarchies; hardware design know-how with human factors expertise; experience in runtime platforms and virtualization tools with knowledge in reliable and distributed computing; and experience in parallel data management with knowledge of parallel linear algebra or statistical algorithms.

In summary, in the post-Dennard, post-Moore’s Law era, interdisciplinary research in algorithms, programming languages, architectures, systems, methodologies, and new technologies is required to sustain computing’s exponential trajectories in efficiency and scalability.

Note: parallel computing (or parallelism), concurrent computing (or concurrency), and distributed computing are closely related and overlapping terms without universally accepted definitions. Where one or more of these terms appear in this solicitation, they should be interpreted broadly so as to include the others whenever appropriate.

II. PROGRAM DESCRIPTION

The XPS program seeks transformative proposals on new and visionary approaches to re-evaluate and possibly re-design the traditionally linear hierarchy of local-to-global stacks of today’s heterogeneous parallel, concurrent, and distributed systems. Proposals should explore new holistic approaches to parallelism and cross-layer design that encompass both software and hardware to achieve scalable performance and usability through new abstract models and algorithms, programming models, languages, and abstractions, data models and declarative query languages, hardware architectures, compilers and runtime systems. Research may focus on scalable performance, energy efficiency and communication efficiency, and/or on enabling the division of effort between edge devices and clouds. Programming support for correctness and performance guarantees, for example, through verified tool-chains, are of primary importance to the program. In general, research should aim to extract general design principles that can be validated on a variety of application domains. In some cases, research may also generate technologies with the potential of being incorporated into innovative applications, tools, products, and cyberinfrastructures that support research in other scientific domains.

The goal of the XPS program is thus to advance core science through a symbiosis between theory and practice so that applications and systems are designed with guarantees of correctness and performance, and the fundamental ideas of achieving such guarantees emerge through in-depth, cross-layer studies of applications and systems themselves, leading to the extraction of general design principles that can be applied across multiple domains. In this manner the XPS program aims to foster a research community dedicated to advancing basic research and education in parallelism, concurrency, and distributed systems, and to transitioning the advances into engineering practice.

II.A Research Areas

Within the general focus of cross-layer design, the XPS program is broadly interested in topics pertaining to Algorithms, Programming Languages and Systems, Applications, Architecture and Systems, Resilient Architectures, and Emerging Technologies. Illustrative -- but non-exhaustive -- thrusts of these topics are discussed below.

Algorithms: Algorithms research must be coordinated with advances in architecture and systems and must be cognizant of cache and memory hierarchies, as well as energy and performance budgets. Research is needed in: (a) new programming languages, program logics, type theories, and language mechanisms that support new computational and data models, raise the level of abstraction, and have programmability, verifiability, modularity, compositionality, and scalable performance as design goals; (b) new data models, query languages, and query optimization techniques that support large datasets and parallel processing for database, data mining, and machine learning queries; (c) robust compiler analysis and optimization for languages that have not traditionally received such support, including dynamic, scripting, and functional languages; (d) software optimization that crosses program boundaries to consider distributed tasks that comprise a datacenter; (e) parallel domain-specific languages, including query languages, that provide both high-level programming models for domain experts and high performance across a range of parallel platforms, such as GPUs, SMPS, and clusters; and (f) program synthesis tools that generate efficient parallel codes and/or query processing plans from high-level problem descriptions using domain-specific knowledge.

Programming Languages and Systems: New algorithms, architectures and systems demand corresponding advances in programming models and tools. Diverse hardware platforms complicate the development of large software systems, which are increasingly written in a heterogeneous mix of languages and run-time systems. Research is needed in: (a) design of new programming languages, program logics, type theories, and language mechanisms that support new computational and data models, raise the level of abstraction, and have programmability, verifiability, modularity, compositionality, and scalable performance as design goals; (b) new data models, query languages, and query optimization techniques that support large datasets and parallel processing for database, data mining, and machine learning queries; (c) robust compiler analysis and optimization for languages that have not traditionally received such support, including dynamic, scripting, and functional languages; (d) software optimization that crosses program boundaries to consider distributed tasks that comprise a datacenter; (e) parallel domain-specific languages, including query languages, that provide both high-level programming models for domain experts and high performance across a range of parallel platforms, such as GPUs, SMPS, and clusters; and (f) program synthesis tools that generate efficient parallel codes and/or query processing plans from high-level problem descriptions using domain-specific knowledge.

Applications: XPS supports research in foundations for emerging and pervasive application domains that exploit big data analytics and the emerging Internet of Things (IoT). Big data demands sophisticated analytics to translate bits into knowledge and insight. The IoT demands coordination and context reasoning that supplies resource consumption and diverse datasets for subsequent analysis. For example, HPC applications, including HPC applications, will be required to analyze massive datasets, perhaps streaming from distributed sensors, to infer broad and significant trends. Research is thus needed to expose parallelism in applications and consequently produce responsive and timely solutions. Illustrative application domains of interest are modeling and simulation applications that advance the sciences, statistical machine learning and contextual analysis, each of which requires foundational and coordinated advances in software and hardware.

Architecture and Systems: Without Dennard scaling to provide smaller, faster, and more efficient transistors, responsibility for continued advances in computing capability falls on architecture and system design. Research is needed in methodologies that generate new hardware architectures and optimize them in terms of varied metrics -- performance, energy efficiency, chip area, programmability, reliability, security, etc. -- while reducing design effort and suppressing nonrecurring engineering costs. As design becomes less difficult, architectures and systems will become increasingly heterogeneous, and will pose significant challenges in systems management, resource allocation, and task scheduling. For example, heterogeneous systems increasingly deploy programmable data-parallel accelerators, reconfigurable logic, neuromorphic accelerators, hardware design exploiting approximation and other specialized capability. Research is needed to optimize the composition of heterogeneous systems and to steer computation to the best suited component.
Extensible Distributed Systems: Large-scale heterogeneous distributed systems (e.g., the web, grid, cloud) have become commonplace in both general purpose and scientific contexts. New applications leveraging these systems require a rich environment that enables sensing and computing with diverse distributed data, along with communications among and between these systems and the elements that comprise them. Data placement and task scheduling that ensures performance despite heterogeneous and non-uniform memory access is critical. Research supporting the science and design of these extensible distributed systems, particularly the components and programming of highly parallel and scalable distributed architectures, will enable the many “smart” technologies of the future. Of significant interest also are fundamental design principles for such distributed systems and the validation of the principles: notions of data consistency, and methodologies, language features, and abstractions that ensure consistency in environments that demand availability in the presence of possible faults. Proposals focusing on extensible distributed systems that take advantage of highly parallel environments and scalable architectures are welcome in XPS; those with broader goals for such systems should consider submitting to the Computer Systems Research (CSR) program.

Resilient Architectures: As systems scale, the probability of failure (hard or soft), degradation, and aging increases. Research is needed in resilient parallel architectures and systems that can recover autonomously from failure. In the future, advances in reconfigurable computing could provide mechanisms for fault recovery. Moreover, advances in neuromorphic architectures could produce resilient parallel platforms that implicitly mask faults due to the nature of approximate computing. Finally, the emergence of fast, high-density and persistent memories could qualitatively improve data durability and availability by reducing the window of vulnerability from node failures and power loss.

Emerging Technologies: Alternative technologies to Silicon and CMOS are emerging to offer qualitatively new capabilities. For a compelling set of applications, these technologies could revolutionize computing by eliminating today’s pressing technology constraints. XPS research is needed to identify and enable applications that exploit parallelism in these new technologies in memory, communication, and packaging. Emerging nonvolatile memories promise to transform computing with (relatively) competitive performance, density, and scalability. Yet identifying the specific technology that will succeed is challenging because technologies such as phase change memory, magnetoresistive RAM, spin-transfer torque (STT) RAM, memristors, etc. continue to show promise. XPS research should develop parameterized models for varied technology scenarios, identify the fundamental properties of these “storage class memories,” and examine the implications for parallel architectures, systems, and applications.

II.B Classes of Proposals

There are two classes of XPS proposals, with differing budget limits and requirements. While a primary objective of the program is to support collaborations bringing together researchers with distinct expertise, the program will also support a small number of exploratory projects, possibly in a single discipline.

- FULL-SIZE (FULL) proposals, with total budgets up to $1,000,000 for up to four years, are intended for groundbreaking research arising from collaborations that involve two or more researchers providing different and distinct expertise relevant to the program’s cross-layer focus of re-examining the traditional computer hardware and software stack.
- EXPLORATORY (EXPL) proposals, with total budgets up to $300,000 for up to three years, are suited to one or more PIs (without the distinct expertise requirement) with at least one student or postdoctoral fellow. Similar to NSF's EAGER mechanism, the intent is to support work in its early stages on untested but potentially transformative research ideas or approaches. These proposals may focus on a single technical topic that has the potential to contribute to a larger effort suitable for a FULL-SIZE project in the future.

II.C Education on Data Collection

NSF encourages PIs to support the education of involved students and researchers on the collection, verification and validation, and curation of data that are collected as a result of the proposed research. We welcome proposals that address how this will be done in the broader impacts section of the Project Description.

III. AWARD INFORMATION

Approximately $14 million will be made available in FY 2016 to support up to 21 awards.

Estimated program budget, number of awards and average award size/duration are subject to the availability of funds.

IV. ELIGIBILITY INFORMATION

Who May Submit Proposals:

The categories of proposers eligible to submit proposals to the National Science Foundation are identified in the Grant Proposal Guide, Chapter I, Section E.

Who May Serve as PI:

Each FULL-SIZE proposal is required to have two or more PIs providing different and distinct expertise relevant to the program’s focus areas. More details are available in Section V.A. Proposal Preparation Instructions.

Limit on Number of Proposals per Organization:

There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI: 2

An investigator may participate as PI, co-PI, or senior personnel in no more than two proposals submitted in response to this solicitation.

In the event that an individual exceeds this limit, proposals will be accepted based on earliest date and time of proposal submission. That is, the first two proposals received will be accepted and the remainder will be returned without review. No exceptions will be made.
V. PROPOSAL PREPARATION AND SUBMISSION INSTRUCTIONS

A. Proposal Preparation Instructions

Full Proposal Preparation Instructions: Proposers may opt to submit proposals in response to this Program Solicitation via Grants.gov or via the NSF FastLane system.

- Full proposals submitted via FastLane: Proposals submitted in response to this program solicitation should be prepared and submitted in accordance with the general guidelines contained in the NSF Grant Proposal Guide (GPG). The complete text of the GPG is available electronically on the NSF website at: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=gpg. Paper copies of the GPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov. Proposers are reminded to identify this program solicitation number in the program solicitation block on the NSF Cover Sheet For Proposal to the National Science Foundation. Compliance with this requirement is critical to determining the relevant proposal processing guidelines. Failure to submit this information may delay processing.

- Full proposals submitted via Grants.gov: Proposals submitted in response to this program solicitation via Grants.gov should be prepared and submitted in accordance with the NSF Grants.gov Application Guide: A Guide for the Preparation and Submission of NSF Applications via Grants.gov. The complete text of the NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: (http://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide). To obtain copies of the Application Guide and Application Forms Package, click on the Apply tab on the Grants.gov site, then click on the Apply Step 1: Download a Grant Application Package and Application Instructions link and enter the funding opportunity number, (the program solicitation number without the NSF prefix) and press the Download Package button. Paper copies of the Grants.gov Application Guide also may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

In determining which method to utilize in the electronic preparation and submission of the proposal, please note the following:

Collaborative Proposals. All collaborative proposals submitted as separate submissions from multiple organizations must be submitted via the NSF FastLane system. Chapter II, Section D.5 of the Grant Proposal Guide provides additional information on collaborative proposals.

See Chapter II.C.2 of the GPG for guidance on the required sections of a full research proposal submitted to NSF. Please note that the proposal preparation instructions provided in this program solicitation may deviate from the GPG instructions.

Proposal titles must indicate the XPS program followed by a colon, then the abbreviation for the class (EXPL or FULL) followed by a colon, then the title of the project. For example, an EXPLORATORY proposal would be XPS: EXPL: Title. For a collaborative proposal, all participating institutions should use the same title, which should also include the keyword "Collaborative Research:" for example, XPS: FULL: Collaborative Research: Title.

Achieving the breakthroughs the XPS program seeks will require a collaborative effort among researchers representing all areas from the application layer down to the micro-architecture. Each FULL-SIZE proposal is therefore required to have two or more PIs providing different and distinct expertise relevant to the program's cross-layer focus of re-examining the traditional computer hardware and software stack. FULL-SIZE proposals are required to include a collaboration plan as a separate supplementary document (limited to 2 pages). This document must describe the backgrounds and different expertise of the PIs, how this relates to the proposed work, and how the PIs plan to collaborate. FULL-SIZE proposals without this document will be returned without review.

As part of the Project Description, EXPLORATORY proposals are required to describe, in a separate section, how the project outcomes might enable a larger effort suitable for a FULL-SIZE project in the future. EXPLORATORY proposals without this section will be returned without review.

All proposals, whether FULL-SIZE or EXPLORATORY, should seek to break and re-define traditional or prevailing abstractions. In a well-marked section in the Project Description, a proposal (a) must explicitly state which abstractions are intended to be broken, (b) provide persuasive arguments in support of the new, re-defined abstractions and (c) show how the new abstractions will be validated. Proposals lacking such a section will be returned without review.

B. Budgetary Information

Cost Sharing: Inclusion of voluntary committed cost sharing is prohibited.

Other Budgetary Limitations:

Proposal budgets for EXPLORATORY awards must not exceed $300,000 and budgets for FULL-SIZE awards must not exceed $1,000,000.

Budget Preparation Instructions:

PI meetings will be held every two years at locations in the continental United States. The proposal budget should include funds for travel for one (EXPLORATORY projects) or two (FULL-SIZE projects) PIs to each of these meetings.

C. Due Dates

- Full Proposal Deadline(s) (due by 5 p.m. proposer's local time):
 January 19, 2016
D. FastLane/Grants.gov Requirements

For Proposals Submitted Via FastLane:

https://www.fastlane.nsf.gov/a1/newstan.htm. For FastLane user support, call the FastLane Help Desk at 1-800-673-6188 or e-mail fastlane@nsf.gov. The FastLane Help Desk answers general technical questions related to the use of the FastLane system. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this funding opportunity.

For Proposals Submitted Via Grants.gov:

Before using Grants.gov for the first time, each organization must register to create an institutional profile. Once registered, the applicant's organization can then apply for any federal grant on the Grants.gov website. Comprehensive information about using Grants.gov is available on the Grants.gov Applicant Resources webpage:
http://www.grants.gov/web/grants/applicants.html. In addition, the NSF Grants.gov Application Guide (see link in Section V.A) provides instructions regarding the technical preparation of proposals via Grants.gov. For Grants.gov user support, contact the Grants.gov Contact Center at 1-800-518-4726 or by email: support@grants.gov. The Grants.gov Contact Center answers general technical questions related to the use of Grants.gov. Specific questions related to this program solicitation should be referred to the NSF program staff contact(s) listed in Section VIII of this solicitation.

Submitting the Proposal: Once all documents have been completed, the Authorized Organizational Representative (AOR) must submit the application to Grants.gov and verify the desired funding opportunity and agency to which the application is submitted. The AOR must then sign and submit the application to Grants.gov. The completed application will be transferred to the NSF FastLane system for further processing.

VI. NSF PROPOSAL PROCESSING AND REVIEW PROCEDURES

Proposals received by NSF are assigned to the appropriate NSF program for acknowledgement and, if they meet NSF requirements, for review. All proposals are carefully reviewed by a scientist, engineer, or educator serving as an NSF Program Officer, and usually by three to ten other persons outside NSF either as ad hoc reviewers, panelists, or both, who are experts in the particular fields represented by the proposal. These reviewers are selected by Program Officers charged with oversight of the review process. Proposers are invited to suggest names of persons they believe are especially well qualified to review the proposal and/or persons they would prefer not review the proposal. These suggestions may serve as one source in the reviewer selection process at the Program Officer's discretion. Submission of such names, however, is optional. Care is taken to ensure that reviewers have no conflicts of interest with the proposal. In addition, Program Officers may obtain comments from site visits before recommending final action on proposals. Senior NSF staff further review recommendations for awards. A flowchart that depicts the entire NSF proposal and award process (and associated timeline) is included in the GPG as Exhibit III-1.

A comprehensive description of the Foundation's merit review process is available on the NSF website at: http://nsf.gov/bfa/dias/policy/merit_review/.

Proposers should also be aware of core strategies that are essential to the fulfillment of NSF’s mission, as articulated in Investing in Science, Engineering, and Education for the Nation’s Future: NSF Strategic Plan for 2014-2018. These strategies are integrated in the program planning and implementation process, of which proposal review is one part. NSF’s mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

One of the strategic objectives in support of NSF’s mission is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions. These institutions must recruit, train, and prepare a diverse STEM workforce to advance the frontiers of science and participate in the U.S. technology-based economy. NSF’s contribution to the national innovation ecosystem is to provide cutting-edge research under the guidance of the Nation’s most creative scientists and engineers. NSF also supports development of a strong science, technology, engineering, and mathematics (STEM) workforce by investing in building the knowledge that informs improvements in STEM teaching and learning.

NSF's mission calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions that are underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF’s mission “to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes.” NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence in basic research and education, the following three principles apply:
• All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
• NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These "Broader Impacts" may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
• Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated, level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (GPG Chapter II.C.2.d.i. contains additional information for use by proposers in development of the Project Description section of the proposal.) Reviewers are strongly encouraged to review the criteria, including GPG Chapter II.C.2.d.i., prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

• Intellectual Merit: The Intellectual Merit criterion encompasses the potential to advance knowledge; and
• Broader Impacts: The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to
 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed activities?
5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

Broader impacts may be accomplished through the research itself, through the activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific knowledge and activities that contribute to achievement of societal relevant outcomes. Such outcomes include, but are not limited to: full participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and mathematics (STEM); improved STEM education and educator development at any level; increased public scientific literacy and public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security; increased economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management Plan and the Postdoctoral Researcher Mentoring Plan, as appropriate.

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by Ad hoc Review and/or Panel Review.

Reviewers will be asked to evaluate proposals using two National Science Board approved merit review criteria and, if applicable, additional program specific criteria. A summary rating and accompanying narrative will be completed and submitted by each reviewer. The Program Officer assigned to manage the proposal’s review will consider the advice of reviewers and will formulate a recommendation.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to the cognizant Division Director whether the proposal should be declined or recommended for award. NSF strives to be able to tell applicants whether their proposals have been declined or recommended for funding within six months. Large or particularly complex proposals or proposals from new awardees may require additional review and processing time. The time interval begins on the deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director acts upon the Program Officer’s recommendation.

After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants and Agreements for review of business, financial, and policy implications. After an administrative review has occurred, Grants and Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.
Once an award or declination decision has been made, Principal Investigators are provided feedback about their proposals. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers or any reviewer-identifying information, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or decline funding.

VII. AWARD ADMINISTRATION INFORMATION

A. Notification of the Award

Notification of the award is made to the submitting organization by a Grants Officer in the Division of Grants and Agreements. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process).

B. Award Conditions

An NSF award consists of: (1) the award notice, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award notice; (4) the applicable award conditions, such as Grant General Conditions (GC-1)*; or Research Terms and Conditions* and (5) any announcement or other NSF issuance that may be incorporated by reference in the award notice. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF's Website at http://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF. Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer at least 90 days prior to the end of the current budget period. (Some programs or awards require submission of more frequent project reports). Within 90 days following expiration of a grant, the PI also is required to submit a final project report, and a project outcomes report for the general public.

Failure to provide the required annual or final project reports, or the project outcomes report, will delay NSF review and processing of any future funding increments as well as any pending proposals for all identified PIs and co-PIs on a given award. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF's electronic project-reporting system, available through Research.gov, for preparation and submission of annual and final project reports. Such reports provide information on accomplishments, project participants (individual and organizational), publications, and other specific products and impacts of the project. Submission of the report via Research.gov constitutes certification by the PI that the contents of the report are accurate and complete. The project outcomes report report also must be prepared and submitted using Research.gov. This report serves as a brief summary, prepared specifically for the public, of the nature and outcomes of the project. This report will be posted on the NSF website exactly as it is submitted by the PI.

VIII. AGENCY CONTACTS

Please note that the program contact information is current at the time of publishing. See program website for any updates to the points of contact.

General inquiries regarding this program should be made to:

- Anindya Banerjee, CISE/CCF, telephone: (703) 292-7885, email: abanerje@nsf.gov
- Tracy Kimbrel, CISE/CCF, telephone: (703) 292-7924, email: tkimbrel@nsf.gov
- Tao Li, CISE/CCF, telephone: (703) 292-8238, email: taoli@nsf.gov
- Amy Apon, CISE/CNS, telephone: (703) 292-7939, email: aapon@nsf.gov
- Mimi McClure, CISE/CNS, telephone: (703) 292-5197, email: mmcclure@nsf.gov
- Rajiv Ramnath, CISE/ACI, telephone: (703) 292-4776, email: rramnath@nsf.gov
IX. OTHER INFORMATION

The NSF website provides the most comprehensive source of information on NSF Directorates (including contact information), programs and funding opportunities. Use of this website by potential proposers is strongly encouraged. In addition, "NSF Update" is an information-delivery system designed to keep potential proposers and other interested parties apprised of new NSF funding opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Grants Conferences. Subscribers are informed through e-mail or the user's Web browser each time new publications are issued that match their identified interests. "NSF Update" also is available on NSF's website.

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding opportunities may be accessed via this mechanism. Further information on Grants.gov may be obtained at http://www.grants.gov.

ABOUT THE NATIONAL SCIENCE FOUNDATION

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic research.

NSF receives approximately 55,000 proposals each year for research, education and training projects, of which approximately 11,000 are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Arctic and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities provide funding for special assistance or equipment to enable persons with disabilities to work on NSF-supported projects. See Grant Proposal Guide Chapter II, Section D.2 for instructions regarding preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.

The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants and cooperative agreements for research and education in the sciences, mathematics, and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Website at http://www.nsf.gov

- Location: 4201 Wilson Blvd. Arlington, VA 22230
 - For General Information (NSF Information Center): (703) 292-5111
 - TDD (for the hearing-impaired): (703) 292-5090
 - To Order Publications or Forms:
 - Send an e-mail to: nsfpubs@nsf.gov
 - or telephone: (703) 292-7827
 - To Locate NSF Employees: (703) 292-5111
The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and project reports submitted by awardees will be used for program evaluation and reporting within the Executive Branch and to Congress. The information requested may be disclosed to qualified reviewers and staff assistants as part of the proposal review process; to proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to other government agencies or other entities needing information regarding applicants or nominees as part of a joint application review process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and used to select potential candidates to serve as peer reviewers or advisory committee members. See Systems of Records, NSF-50, "Principal Investigator/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004), and NSF-51, "Reviewer/Proposal File and Associated Records," 69 Federal Register 26410 (May 12, 2004). Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton
Reports Clearance Officer
Office of the General Counsel
National Science Foundation
Arlington, VA 22230