Secure and Trustworthy Cyberspace (SaTC)

PROGRAM SOLICITATION
NSF 17-576

REPLACES DOCUMENT(S):
NSF 16-580

Submission Window Date(s) (due by 5 p.m. submitter's local time):

- MEDIUM Projects:
 - October 03, 2017 - October 10, 2017

- FRONTIER Projects:
 - October 13, 2017 - October 20, 2017

- SMALL Projects:
 - November 01, 2017 - November 15, 2017

- CYBERSECURITY EDUCATION Projects:
 - December 06, 2017 - December 13, 2017

IMPORTANT INFORMATION AND REVISION NOTES

This is a revision of NSF 16-580, the solicitation for the SaTC Program. The revisions include:

1. Revisions to the submission deadline windows.
2. The Frontier competition replaces the Large competition.
3. Additional information is included for Broadening Participation. All Frontier projects must include actionable components that seek to increase participation of underrepresented groups in computing.
4. Minor revisions to the SaTC program description, including addition of new topic areas.
5. Changes to eligibility information regarding who may submit a proposal.
7. Removal of the "annually thereafter" from the submission windows. This does not reflect a change in policy, but rather a simplification to avoid confusion.
8. Clarification of restrictions regarding foreign campuses/offices of US universities.
9. Collaborators and Other Affiliations are collected using a template spreadsheet for each individual on a proposal, which Fastlane will combine into a PDF document. Project leads need not collect and combine collaborator lists.
Any proposal submitted in response to this solicitation should be submitted in accordance with the revised NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 17-1), which is effective for proposals submitted, or due, on or after January 30, 2017.

SUMMARY OF PROGRAM REQUIREMENTS

General Information

Program Title:
Secure and Trustworthy Cyberspace (SaTC)

Synopsis of Program:
In today's increasingly networked, distributed, and asynchronous world, cybersecurity involves hardware, software, networks, data, people, and integration with the physical world. However, society's overwhelming reliance on this complex cyberspace has exposed its fragility and vulnerabilities: corporations, agencies, national infrastructure and individuals have been victims of cyber-attacks. Achieving a truly secure cyberspace requires addressing both challenging scientific and engineering problems involving many components of a system, and vulnerabilities that arise from human behaviors and choices. Examining the fundamentals of security and privacy as a multidisciplinary subject can lead to fundamentally new ways to design, build and operate cyber systems, protect existing infrastructure, and motivate and educate individuals about cybersecurity.

The goals of the Secure and Trustworthy Cyberspace (SaTC) program are aligned with the Federal Cybersecurity Research and Development Strategic Plan (RDSP) and the National Privacy Research Strategy (NPRS) to protect and preserve the growing social and economic benefits of cyber systems while ensuring security and privacy. The RDSP identified six areas critical to successful cybersecurity R&D: (1) scientific foundations; (2) risk management; (3) human aspects; (4) transitioning successful research into practice; (5) workforce development; and (6) enhancing the research infrastructure. The NPRS, which complements the RDSP, identifies a framework for privacy research, anchored in characterizing privacy expectations, understanding privacy violations, engineering privacy-protecting systems, and recovering from privacy violations. In alignment with the objectives in both strategic plans, the SaTC program takes an interdisciplinary, comprehensive and holistic approach to cybersecurity research, development, and education, and encourages the transition of promising research ideas into practice.

The SaTC program welcomes proposals that address cybersecurity and privacy, and draw on expertise in one or more of these areas: computing, communication and information sciences; engineering; economics; education; mathematics; statistics; and social and behavioral sciences. Proposals that advance the field of cybersecurity and privacy within a single discipline or interdisciplinary efforts that span multiple disciplines are both encouraged.

Proposals may be submitted in one of the following three project size classes:
- Small projects: up to $500,000 in total budget, with durations of up to three years;
- Medium projects: $500,001 to $1,200,000 in total budget, with durations of up to four years;
- Frontier projects: $5,000,000 to $10,000,000 in total budget, with durations of up to five years.

In addition to the project size classes, proposals must be submitted pursuant to one of the following designations, each of which may have additional restrictions and administrative obligations as specified in this program solicitation.
- CORE: This designation is the main focus of the SaTC research program, spanning the interests of NSF's Directorates for Computer and Information Science and Engineering (CISE), Engineering (ENG), Mathematical and Physical Sciences (MPS), and Social, Behavioral and Economic Sciences (SBE). Interdisciplinary proposals are welcomed to CORE.
- EDU: The Education (EDU) designation will be used to label proposals focusing entirely on cybersecurity education. Note that proposals that are designated as EDU have budgets limited to $300,000 and durations of up to two years.
- STARSS: The Secure, Trustworthy, Assured and Resilient Semiconductors and Systems (STARSS) designation will be used to label proposals that are submitted to the joint program focused on hardware security with the Semiconductor Research Corporation (SRC). The STARSS designation may only be used for Small proposals. This designation has additional administrative obligations.
- TTP: The Transition to Practice (TTP) designation will be used to label proposals that are focused exclusively on transitioning existing research results to practice. The TTP designation may only be used for Small and Medium proposals.

Cognizant Program Officer(s):
Please note that the following information is current at the time of publishing. See program website for any updates to the points of contact.
- Nina Amla, Program Director, CISE/CCF, 1110, telephone: (703) 292-8910, email: namla@nsf.gov
- Dan Cosley, Program Director, CISE/IIS, 1125, telephone: (703) 292-8491, email: dcosley@nsf.gov
- Sol Greenspan, Program Director, CISE/CCF, 1115, telephone: (703) 292-8910, email: sgreensp@nsf.gov
- Timothy Hodges, Program Director, MPS/DMS, 1020, telephone: (703) 292-2113, email: thodges@nsf.gov
- Sara Kiesler, Program Director, SBE/SES, 995, telephone: (703) 292-8643, email: skiesler@nsf.gov
Applicable Catalog of Federal Domestic Assistance (CFDA) Number(s):

- 47.041 --- Engineering
- 47.049 --- Mathematical and Physical Sciences
- 47.070 --- Computer and Information Science and Engineering
- 47.075 --- Social Behavioral and Economic Sciences
- 47.076 --- Education and Human Resources

Award Information

Anticipated Type of Award:

Standard Grant or Continuing Grant

Estimated Number of Awards: 87

In FY 2018, NSF anticipates approximately 10 Education awards, 50 Small awards, 25 Medium awards and 1-2 Frontier awards.

Anticipated Funding Amount: $68,000,000 per year, dependent on the availability of funds.

Eligibility Information

Who May Submit Proposals:

Proposals may only be submitted by the following:

- Universities and Colleges - Universities and two- and four-year colleges (including community colleges) accredited in, and having a campus located in, the US acting on behalf of their faculty members. Such organizations also are referred to as academic institutions.
- Non-profit, non-academic organizations: Independent museums, observatories, research labs, professional societies and similar organizations in the U.S. associated with educational or research activities.

Who May Serve as PI:

PIs, co-PIs or other senior project personnel must hold primary and full-time paid appointments in research or teaching positions at US-based campuses/offices of eligible organizations.

Limit on Number of Proposals per Organization:

There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI: 5

An individual can participate as a PI, co-PI or senior personnel on no more than five SaTC proposals. There is a limit of:

- two proposals designated as CORE and/or STARSS (across Small, Medium, and Frontier); and
- two proposals designated as TTP (either Small or Medium); and
- one proposal designated as EDU.

These limits apply per year to Small, Medium, Frontier and Education proposals in response to this solicitation, and are unrelated to any limits imposed in other NSF solicitations. Note, for example, that you may NOT submit two proposals to SaTC CORE, and three to STARSS, but you may submit one proposal to SaTC CORE, another to STARSS, two to TTP and one to EDU.

These eligibility constraints will be strictly enforced in order to treat everyone fairly and consistently. In the event that an individual exceeds this limit, proposals received within the limit will be accepted based on earliest date and time of proposal submission. No exceptions will be made.

Proposal Preparation and Submission Instructions

A. Proposal Preparation Instructions
Letters of Intent: Not required
Preliminary Proposal Submission: Not required
Full Proposals:

B. Budgetary Information

- Cost Sharing Requirements:
 Inclusion of voluntary committed cost sharing is prohibited.
- Indirect Cost (F&A) Limitations:
 Not Applicable
- Other Budgetary Limitations:
 Other budgetary limitations apply. Please see the full text of this solicitation for further information.

C. Due Dates

- Submission Window Date(s) (due by 5 p.m. submitter's local time):
 October 03, 2017 - October 10, 2017
 MEDIUM Projects
 October 13, 2017 - October 20, 2017
 FRONTIER Projects
 November 01, 2017 - November 15, 2017
 SMALL Projects
 December 06, 2017 - December 13, 2017
 CYBERSECURITY EDUCATION Projects

Proposal Review Information Criteria

Merit Review Criteria:
National Science Board approved criteria. Additional merit review considerations apply. Please see the full text of this solicitation for further information.

Award Administration Information

Award Conditions:
Additional award conditions apply. Please see the full text of this solicitation for further information.

Reporting Requirements:
Standard NSF reporting requirements apply.

TABLE OF CONTENTS

Summary of Program Requirements
I. Introduction
II. Program Description
III. Award Information
I. INTRODUCTION

Making cyberspace secure and trustworthy is one of the most important challenges confronting society. The fragility and vulnerability of cyberspace have exposed societies and individuals to untold risks with severe consequences. Achieving a more secure cyberspace demands overcoming significant scientific challenges, and realizing privacy and trust in cyberspace requires a delicate balancing of technology with human and societal needs. New advances in technologies for cyberspace, changes in society, and adoption in new domains will also necessitate a rethinking of the relationships among security, privacy, and trust in cyberspace. The multi-disciplinary Secure and Trustworthy Cyberspace (SaTC) program seeks fundamentally new, principled approaches to protect and defend cyberspace against harmful actions by determined adversaries, and to measure their effectiveness. The SaTC program also seeks to explore innovative approaches for growing a capable, next-generation cyber workforce, and for accelerating the transition of successful cybersecurity research into practice and useful products.

In the last year, the National Science and Technology Council (NSTC) released the Federal Cybersecurity Research and Development Strategic Plan (RDSP), a broad, coordinated Federal strategic plan for cybersecurity research and development, in order to preserve the growing social and economic benefits by thwarting adversaries and strengthening public trust of cyber systems. The plan calls for sound mathematical and scientific foundations, principled design methodologies, and metrics for evaluating success or failure for securing cyberspace. Highlighted in the plan is the need for socio-technical approaches that consider human, social, organizational, economic and technical factors, and the complex interaction among them in the creation, maintenance, and operation of secure systems and infrastructure. The plan underscores the need for rapid transfer of research results to potential users, including the dissemination of best practices and outreach activities, and research infrastructure. Finally, the plan calls for research in cybersecurity education to satisfy present and future workforce demand of qualified cybersecurity professionals.

The NSTC also announced a National Privacy Research Strategy (NPRS) with the goal of enabling individuals, companies, and the government to benefit from cyber systems while effectively balancing those benefits with their risks to privacy. The strategy calls for characterizing key socio-technical issues that challenge privacy, and articulating goals for research in social, behavioral and economic sciences needed for designing, using, and evaluating these socio-technical systems. The NPRS highlights the need for networking and information technology research for underlying privacy-enhancing technologies and related topics.

This solicitation supports these NSTC strategies for a secure and trustworthy cyberspace with privacy imperatives, which are critical to our national priorities in commerce, education, energy, financial services, healthcare, manufacturing, and defense. In strong alignment with the objectives in these plans, the SaTC program, in collaboration with industrial and international partners, takes an interdisciplinary, comprehensive and holistic approach to cybersecurity and privacy research, development, technology transfer, and education. SaTC leverages the disciplines of computing, communications and information sciences; economics; education; engineering; mathematics; statistics; and social and behavioral sciences.

II. PROGRAM DESCRIPTION

Cyberspace is a complex ecosystem that involves computer hardware, software, networks, data, people, and integration with the physical world. However, society's overwhelming reliance on cyberspace has exposed its fragility and vulnerabilities: corporations, agencies, national infrastructure and individuals have been victims of cyber-attacks. Achieving cybersecurity while protecting the privacy of individuals requires not only understanding the technical weaknesses of components of a system and how they can be addressed, but also understanding the human-centric aspects of secure cyber systems. Examining the fundamentals of security and privacy from many different perspectives can, in turn, lead to fundamentally new ways to design, build and operate cyber systems, protect existing infrastructure, and motivate and educate individuals about security and privacy.

The Secure and Trustworthy Cyberspace (SaTC) program welcomes proposals that address cybersecurity and privacy, and draw on expertise in one or more of these areas: computing, communication and information sciences; engineering; economics; education; mathematics; statistics; and social and behavioral sciences. Proposals that advance the field of cybersecurity within a single discipline or efforts that span multiple disciplines are both encouraged.
Proposals may be submitted in one of the following three project size classes:

- **Small projects**: up to $500,000 in total budget, with durations of up to three years;
- **Medium projects**: $500,001 to $1,200,000 in total budget, with durations of up to four years;
- **Frontier projects**: $5,000,000 to $10,000,000 in total budget, with durations of up to five years.

In addition to the project size classes, proposals must be submitted pursuant to one of the following designations, each of which may have additional restrictions and administrative obligations.

- **CORE**: This designation is the main focus of the SaTC research program, spanning CISE, ENG, MPS and SBE interests. Interdisciplinary proposals are welcomed to CORE.
- **EDU**: The Education (EDU) designation will be used to label proposals focusing entirely on cybersecurity education. Note that proposals that are designated as EDU have budgets limited to $300,000 and durations of up to two years.
- **STARSS**: The Secure, Trustworthy, Assured and Resilient Semiconductors and Systems (STARSS) designation will be used to label proposals that are submitted to the joint program focused on hardware security with the Semiconductor Research Corporation (SRC). The STARSS designation may only be used for Small proposals. This designation has additional administrative obligations regarding SRC.
- **TTP**: The Transition to Practice (TTP) designation will be used to label proposals that are focused exclusively on transitioning existing research to practice. The TTP designation may be used for Small and Medium proposals.

PROJECT CLASSES

With the exception of Cybersecurity Education (EDU) proposals described below, any proposal submitted to this solicitation must be consistent with one of three project classes defined below. Proposals will be considered for funding within their project classes.

SMALL Projects: Small projects, with total budgets up to $500,000 for durations of up to three years, are well suited to one or two investigators (PI and one co-PI or other Senior Personnel) and at least one student and/or postdoc.

- Small projects may be submitted with these designations: CORE, STARSS, and TTP.

MEDIUM Projects: Medium projects, with total budgets ranging from $500,001 to $1,200,000 for durations of up to four years, are well suited to one or more investigators (PI, co-PI and/or other Senior Personnel) and several students and/or postdocs.

- Medium project descriptions must be comprehensive and well-integrated, and should make a convincing case that the collaborative contributions of the project team will be greater than the sum of each of their individual contributions. Rationale must be provided to explain why a budget of this size is required to carry out the proposed work.
- Since the success of collaborative research efforts is known to depend on thoughtful coordination mechanisms that regularly bring together the various participants of the project, a separate Collaboration Plan is required for all Medium proposals with more than one investigator. Up to 2 pages are allowed for Collaboration Plans and they must be submitted as a document under Supplementary Documentation. The length of and level of detail provided in the Collaboration Plan should be commensurate with the complexity of the proposed project. Collaboration plans and proposed budgets should demonstrate that key personnel, and especially lead PIs, have allocated adequate time for both their individual technical contributions and the leadership of collaborative activities necessary to realize the synergistic effects of larger-scale research. If a Medium proposal with more than one investigator does not include a Collaboration Plan, that proposal will be returned without review. Please see Proposal Preparation Instructions Section V.A for additional submission guidelines.

- Medium projects may only be submitted with these designations: CORE and TTP.

FRONTIER Projects: Frontier projects, with total budgets ranging from $5,000,000 to $10,000,000 for durations of up to five years, are well suited to multiple investigators (PI, co-PI and/or other Senior Personnel), and a team of students and/or postdocs.

- Frontier projects should be large, multidisciplinary, multi-organizational, and/or multi-institutional, and should provide high-level visibility to grand challenge research areas in cybersecurity. A Frontiers proposal should have a long-term vision, with objectives that could not be attained simply by a collection of Small or Medium proposals provided similar resources. Project descriptions must be comprehensive and well-integrated, and should make a convincing case that the collaborative contributions of the project team will be greater than the sum of each of their individual contributions. Rationale must be provided to explain why a budget of this size is required to carry out the proposed work.
- Since the success of collaborative research efforts is known to depend on thoughtful coordination mechanisms that regularly bring together the various participants of the project, a separate Collaboration Plan is required for all Frontier proposals. Up to 2 pages are allowed for Collaboration Plans. The length of and level of detail provided in the Collaboration Plan should be commensurate with the complexity of the proposed project. If a Frontier proposal does not include a Collaboration Plan, that proposal will be returned without review. Please see Proposal Preparation Instructions Section V.A for additional submission guidelines.

All Frontier projects must satisfy these additional requirements.

- All Frontier projects must be submitted to the CORE designation only.
- Prior to submission, the PIs must contact SaTC Program Officer Nina Amla to discuss the suitability of the project to the Frontier-scale competition.
- Frontier projects must include a project director or project coordinator to assist with management and collaboration. The budget must include associated costs and the collaboration plan should discuss the specific responsibilities of this position.
- Frontier projects must include actionable components that seek to increase participation of underrepresented groups in computing. These efforts to broaden participation can be undertaken by an individual PI or in collaboration with others, working within institutions, professional organizations, and/or community groups. Additional information on broadening participation efforts can be found below.

BROADENING PARTICIPATION

CISE is committed to enhancing the community's awareness of and overcoming barriers to Broadening Participation in Computing (BPC), and to providing information and resources to principal investigators (PIs) so that they can develop interest, skills, and activities
in support of BPC at all levels of the CISE community (K-12, undergraduate, graduate, and postgraduate). Indeed, CISE supports meaningful actions that address the longstanding underrepresentation of various populations including women, minorities (African Americans/Blacks, Hispanic Americans, American Indians, Alaska Natives, Native Hawaiians, Native Pacific Islanders, and persons from economically disadvantaged backgrounds), and persons with disabilities, in the computing field. Towards this end, with this solicitation, CISE is initiating a pilot BPC effort. Beginning with submissions to this solicitation, all CISE PIs are strongly encouraged to include meaningful BPC plans in the Broader Impacts sections of their submitted proposals, and/or to begin preparing to include such plans in future proposal submissions. Additionally, CISE is piloting a requirement for meaningful BPC plans in all proposals submitted to the Frontier competition of the SaTC programs. More information, including examples of meaningful BPC activities and metrics, can be found on the CISE BPC webpage: https://www.nsf.gov/cise/bpc.

DESIGNATIONS

All SaTC proposals must be submitted to one of the following designations: CORE, EDU, STARSS, or TTP. The focus of each designation is described below, along with any additional restrictions and administrative obligations.

Secure and Trustworthy Cyberspace core research (CORE) designation

The scope of the SaTC core research program is broad and interdisciplinary, and welcomes foundational research on security and privacy from researchers in computer science, engineering, mathematics, and social, behavioral and economic sciences. This solicitation focuses only on research directly supporting a safe, secure, resilient, and trustworthy cyberspace, conducted ethically with the highest scientific standards. Of special interest are proposals that are transformative, forward-looking, and offer innovative or clean-slate approaches that provide defenders a distinctive advantage. SaTC views cybersecurity as a socio-technical challenge and encourages proposals that advance the field of cybersecurity within a single discipline, or efforts that span multiple disciplines.

Topics in the area of computer and information sciences and engineering include, but are not limited to, research on theoretical and practical methods to design, build, analyze and operate cyber systems that are secure, private, and usable. Of interest are techniques to reason about, and predict, system security trustworthiness, including formal models, observable metrics, analytical methods, simulation, experimental deployment and, when reasonable and safe, deployment on live testbeds for experimentation at scale. Research that studies the trade-offs among trustworthy computing properties, such as security and usability or accountability and privacy, as well as work that examines the tension between security and human values such as openness and transparency, is also welcomed. SaTC also welcomes research on roles and management, robust understanding and intelligent analysis of data and information that addresses the cybersecurity challenge. Proposals should, when appropriate, include a clear and concise description of the threat model and its relation to the proposed research. The program discourages research focused primarily on the design and development of offensive techniques for exploiting vulnerabilities of systems that could be harmful to the operation of existing cyberspace.

Topics in the area of social, behavioral and economic sciences include, but are not limited to, research identifying cybersecurity and privacy risks and exploring the feasibility of potential solutions at the individual, group, organizational, market, and societal levels. Proposals that seek to understand, predict and explain attack and/or defense behaviors as well as prevention, and that contribute to developing strategies for remediation are of interest. Related proposals that contribute to the design of incentives, markets or institutions to reduce either the likelihood of cyber attacks or the negative consequences of cyber attacks are welcomed, as are proposals that examine incentives and motivations of individuals. Proposals that advance social networking theories and methods are welcomed. All research approaches, including (but not limited to) theoretical, experimental, observational, statistical, survey, and simulation-based, are of interest. Expected contributions include identifying generalizable theories and advancing research methods that push the boundaries of our understanding of social, behavioral, or economic phenomena in cybersecurity, privacy, and attack and/or defense behaviors, prevention, and successful remediation strategies.

Topics in the area of statistical and mathematical sciences include, but are not limited to, research on mathematical foundations of cryptography; new algorithms, risk assessments and statistical methods in cybersecurity and privacy; and non-traditional constructive approaches for efficient hiding of digital information, building on recent mathematical advances making encryption schemes resistant to both classical and quantum attacks.

Some specific research topics of interest for CORE proposals include, but are not limited to:

Access control and Identity Management: Topics of interest include language-based techniques and frameworks for specifying authorizations; access control models to support various computing environments and resource management conditions; techniques for automating policy generation or consistency checking; techniques for improving human usability of policy specification; metrics and methods of evaluating characteristics related to access control; theoretical and practical models of user and digital identities; and provisioning and reconciliation of identities across models.

Authentication and Biometrics: Topics of interest include continuous authentication methods, remote authentication, multi-factor authentication, geolocation authentication, password-based methods, device technology, mobile authentication, identity and credential management, verifiers, robustness of authentication, and reverse engineering of electronic authentication credentials. Biometric authentication methods that are based on human characteristics (such as physiological, neurological, and behavioral) must exhibit strong security guarantees/must be evaluated in the context of properly defined attack models.

Cryptography Applied and Theory: Topics of interest include all applications of cryptography, especially in networks, cloud computing, electronic commerce, or in any other real-world setting. Symmetric and asymmetric encryption methods such as attribute-based encryption, functional encryption, fully homomorphic encryption, program obfuscation, information theoretic security, steganography, cryptanalysis and post-quantum cryptography are also of interest. Research on side channel and leakage resilience, memory-hard functions, secure multi-party computation, verifiable computation, non-malleable codes, computer-aided cryptographic proofs, and digital currencies are also in scope.

Cyber-Physical Systems (CPS): Topics of interest include research on security and privacy of cyber-physical systems that integrate sensing, computation, control and networking into physical objects and infrastructure, connecting them to other systems, to users, and to each other. Systems of interest may or may not include humans in-the-loop. Also of interest are techniques for leveraging fundamental physical properties to improve security or privacy, system vulnerabilities and mitigations; system models; and measuring and assessing security or privacy characteristics of systems, as well as human usability of system protection mechanisms.
Data science: Topics of interest include advances in data analytics techniques for assessing, predicting, and enhancing SaTC-relevant aspects of systems and human behavior; this includes applications, tools, and infrastructures at the level of individual systems, of organizations, and of social networks. Also of interest are advances in statistical and computational methods relevant to secure computational infrastructure for data science (e.g., secure and/or privacy-aware management, retrieval, analytics, and publishing of structured or unstructured data).

Forensics: Topics of interest include research into techniques for identifying preserving, recovering and analyzing digital artifacts and systems. Also of interest is forensics of host and virtual computing systems, memory, storage systems, computer and communications networks, mobile systems, cloud-based systems, and applications such as social media.

Formal methods and language-based techniques: Topics of interest include formal definitions, models, frameworks for security, privacy and trust; security-preserving composition; and principled, secure design, analysis, verification and synthesis techniques that bridge the gap between high-level security model and code development. Also of interest are information flow, programming language-based approaches, secure compilation, verification techniques for cryptography and other security protocols, and secure-by-construction techniques. All applications of formal techniques, especially those applied in distributed, operating, networked and hardware systems, are of special interest.

Hardware security architecture: Topics of interest include architectural support for authenticating devices and firmware, secure booting, secure firmware/software update, secure execution environments, multi-party computation, information flow tracking, privacy protection, and acceleration of security primitives and protocols. Also of interest are detection and mitigation of cache/memory side channels, covert channels, instruction-set architecture (ISA) to support security and privacy, identification/mitigation of security vulnerabilities in emerging technologies and paradigms, and hardware-assisted techniques for the security of systems including the Internet of Things (IoT) and software.

Hardware design: Topics of interest include techniques for the development of secure and tamper-resistant hardware, identification, protection and mitigation of Trojans, watermarking, side channel attacks, reverse engineering of hardware designs, and hardware obfuscation. Also of interest are hardware implementations of cryptography, acceleration of security primitives, modeling attacks and countermeasures, proximity verification, security metrics, trusted manufacturing, tamper proofing and securing the hardware supply chain.

Information Trustworthiness: Topics of interest include measuring, assessing, predicting, and demonstrating the trustworthiness or untrustworthiness of information and information sources; studying and modeling the methods and motives of actors in the creation, dissemination, consumption, sharing, and evolution of information online; and evaluating and predicting the effects of untrustworthy information on individuals, groups, organizations, and society. Also of interest are computational techniques and human-facing systems for mitigating the risks posed by untrustworthy information and enhancing the trustworthiness of information in both particular contexts and cyberspace as a whole.

Intrusion Detection: Topics of interest include research into the detection of malicious attacks on systems, networks, datasets, algorithms, software, sensors or other system-critical elements. Also of interest are techniques for detecting attacks (before, during or after), methods for analyzing abnormal system behaviors, the role of human cognition in the detection of attacks, techniques for improving human usability of intrusion detection systems, metrics of attack severity or attacker effort, and methods of evaluating effectiveness of intrusion detection techniques.

Mathematics and statistics: Topics of interest include research on the mathematical foundations of cryptographic protocols. In particular, research into the questions arising out of the development of secure post-quantum cryptographic methods such as those based on lattices, codes, multivariate functions, and super-singular isogenies; research into cryptographically effective multi-linear maps; and novel applications of statistics and probability to security and privacy problems such as intrusion detection and differential privacy. SaTC encourages collaborations between security researchers and mathematical scientists.

Networks: Topics of interest include research on communication and network system security, including but not limited to information theoretical security for wireless systems; jamming attack and defense; covert channel detection; anonymization and privacy methods; secure localization and location privacy; cross-layer methods for enhancing security and privacy; DDoS attack and defense; key management and public key infrastructure (PKI) for networks; security and privacy in the home, enterprise, data center, cloud networks, SDN, optical and Internet-scale and IoT-scale networks; as well as security and privacy in wireless networks, mobile sensing systems, cognitive radio and dynamic spectrum access systems. Also of interest are TOR networks, anti-censorship, crowd-sourcing security and privacy, network measurement and modeling for advancing security and privacy, networked systems and mobile applications that rely on a secure communication substrate. Research on analysis techniques and large-scale measurement of the security and privacy associated with social networking applications, tools and infrastructures is also in scope.

Privacy: Topics of interest include a range of privacy-related subjects: from theoretical to experimental, from computational to social and behavioral, from usability to accountability, and from understanding the human perception of privacy to devising practical tools and systems that mitigate privacy concerns. There are many types of private information that may be of concern, ranging from personal health records to online activities and social media postings, from the anonymity of network communications to the anonymity of financial transactions, and from structured relational records to spatial-temporal data to unstructured text. The broad spectrum of private data in turn calls for a wide variety of scientific methods that are often interdisciplinary in nature, spanning mathematical, statistical, computational, social, behavioral and economic sciences. Research on privacy that addresses not only the proper understanding, management, and protection of private information, but also the interplay of privacy and other complex social and technological challenges in building a secure and trustworthy cyberspace is also of interest. Examples include privacy issues arising from identity management, cloud computing, big data applications, surveillance, forensics, censorship, crowd-sourcing, social networks, and behavioral targeting, among many others.

Social, Behavioral and Economic Sciences: SaTC supports research on ethical, political, legal, cultural, or societal dimensions of security and privacy. Topics of interest include predicting and mitigating destructive online behavior (such as trolling, spamming, cyber-bullying, andransoming); privacy, security, and trustworthiness associated with creating, sharing, disseminating, and filtering of information; intended and unintended consequences of security or privacy practices and policies; predicting effective responses by individuals or organizations to cyber-attacks and threats; cyber-security organizational strategies, investments, or governance; risks and benefits for security, privacy, or trust arising from new cyber-technologies. Approaches to these and other topics may include economic analyses of incentive structures and mechanisms, sociological research on demographic, structural, and cultural dimensions; behavioral science research on individual, group, and organizational behavior, or cognitive, statistical, or computational modeling and
analyses of the behavior of individuals, groups, organizations, or networks. Proposals addressing social, behavioral, policy, organizational, economic, or governance dimensions of cybersecurity, privacy, and trust should build on the existing scientific literature, and contribute to fundamental principles and insights on the human aspects of cybersecurity and privacy.

Software security engineering: Topics of interest include techniques, methods and tools for detecting and mitigating software vulnerabilities and malware through software analysis and testing; methods and tools for programmers and programming environments to design-in security and privacy capabilities during software development; and improvements to security and privacy in ubiquitous computing environments such as mobile, web and domain-specific platforms. Also of interest are the incorporation of security and privacy requirements and validation into the software development process, principled techniques for composing security and privacy mechanisms, and methods to design security and privacy properties into components and systems.

Systems: Topics of interest include research on security and privacy of systems for computation or storage of data. Systems of interest range from small, stand-alone devices through smart phones, general-purpose computers, and networked systems at the enterprise or cross-enterprise levels, as well as browsers, application-based platforms, cloud computing systems, virtualized systems, and databases large or small. Also of interest are system vulnerabilities and mitigations; policy enforcement; accountability (e.g., logging, audit provenance); system models; techniques supporting system design or implementation; metrics; and techniques for measuring and assessing security or privacy characteristics of systems, and human usability of system protection mechanisms.

Usability and Human Interaction: Topics of interest include the analysis, design, implementation, and evaluation of user-facing/interface aspects of online systems that have significant privacy and security components or implications. These include design research and needs analyses to create or improve applications, devices, and tools that help end users and other stakeholders accomplish privacy- and security-related goals; the application of data analytic and social science techniques and theories to the design of these interfaces and tools; and the analysis and evaluation of their usability, utility, and effects around privacy and security at the level of individuals, dyads, groups, organizations, and societies. Also of interest is socio-technical research aimed at improving access to and accessibility of security and privacy supporting technologies and interfaces for special populations, broadly construed as people or groups with diverse characteristics that might affect cybersecurity risks and needs.

Secure, Trustworthy, Assured and Resilient Semiconductors and Systems (STARSS) Designation

STARSS is a joint effort of the National Science Foundation (NSF) and the Semiconductor Research Corporation (SRC). A STARSS proposal is similar to other Small proposals submitted to the SaTC program except that proposers must also submit the proposal to SRC according to SRC proposal and submission guidelines. It is expected that, at a minimum, the project summary, project description, and references cited will be identical in the proposals submitted separately to NSF and SRC. Additional proposal documentation and materials specific to SRC are required. Please see SRC STARSS Proposal Submission Guide.

STARSS is focused on research on Design for Assurance. Specifically, STARSS will support research to develop designs, analysis strategies, processes and tools for secure, trustworthy, reliable and privacy-preserving chips, systems, computing and communications, with the aim of decreasing the likelihood of unintended behavior or access, increasing resistance and resilience to tampering, and improving the ability to provide authentication throughout the supply chain and in the field. The following topics are representative of relevant research areas:

- **Architecture and design.** Approaches, models and frameworks for reasoning about and specifying hardware-specific security properties. These design and architecture approaches should not be studied in isolation; the impact of security at the level of circuits and processors must be understood in terms of system-wide functionality, performance, and power goals.
- **Principles, properties and metrics.** Hardware security design principles and semiconductor-specific properties. Security metrics for evaluating or comparing designs, and that are extensible and potentially useful for privacy composition or for providing trust evidence at the system level.
- **Verification.** Tools, techniques, and methodologies for verifying hardware-specific security properties and enforcing security design principles. Innovative approaches to establish safety properties without knowing all aspects of the design, and thereby providing strong provable assurance. Approaches to increase automation of security verification and analysis.
- **Embedded software and firmware.** Strategies and techniques to reduce vulnerabilities in embedded software and firmware, and for providing updates to address known vulnerabilities discovered after deployment in the field.
- **Authentication and attestation.** Models for the insertion of artifacts or design elements that are verifiable during design and throughout the life cycle. Supporting issues, such as the generation, protection and establishment of trust models for hardware-implemented keys, are also of interest.

Small research proposals targeting hardware security may be submitted to the SaTC CORE designation. For topics within scope, STARSS provides an opportunity for close collaboration with industry through SaTC. Hardware security proposals not specifically addressing STARSS criteria (see Section VI) should be submitted to the SaTC CORE designation. When considering topics for research, proposers are encouraged to review past awards made by the STARSS activity and identify areas that are within the technical scope and not already the subject of study. Proposals in areas not already covered by prior projects are particularly encouraged. To find past STARSS awards, go to https://www.nsf.gov/awardsearch and search for "STARSS.”

Questions regarding SRC policies and guidelines should be addressed directly to Scott Litt (Scott.List@src.org), Semiconductor Research Corporation.

Transition to Practice (TTP) Designation

The objective of the Transition to Practice (TTP) designation is to support the development, implementation, and deployment of later-stage and applied security or privacy research into an operational environment in order to bridge the gap between research and production. A TTP-designated proposal must specifically describe how the successful research results will be operationally deployed into an organization or technology. Collaborations with industry are strongly encouraged. The outcome of a TTP project is not solely intended to be commercialization, although the TTP may be a stepping-stone to a Small Business Innovation Research (SBIR) proposal or a commercial venture. A TTP may transition later-stage research by other means such as licensing to commercial or government end users or deployment into scientific research cyberinfrastructure or Research and Education Networks. Proposals that target the security of the scientific research cyberinfrastructure, and enable robust and reliable science through advances in reproducibility, provenance, and privacy are highly encouraged. Topics of interest include: tools to detect behavioral anomalies across cyberinfrastructure systems, including detecting the tools and techniques of an attack and methods to mitigate security threats; tools to...
ensure the integrity of data as it traverses multiple environments such as mobile, cloud, multiple clouds, and networks; and real-time data analytics for security incident response.

A TTP proposal must include a project plan that addresses major tasks and system development milestones as well as an evaluation plan for the working system.

In addition, TTP proposals will be evaluated with careful attention to the:

- Description of the problem being solved or need being addressed;
- Identification of a target user group or organization that will serve as an early adopter of the technology; if no early adopter is identified by the time the proposal is submitted, the proposal must specify milestones as to when an early adopter will be named;
- Deployment plan for implementing the pilot or prototype system into an operational environment;
- Novelty of the intended system, software, or architecture;
- Composition of the proposal team, which should demonstrate not only technical expertise in areas such as software engineering, but also skills in project management and systems development;
- Explanation of the post-grant, long-term software and/or system sustainability;
- Appropriateness of the budget for the effort; and
- Extent of collaboration with the university Technology Transfer Office (TTO) or similar organization from the PI's institution (a letter from the TTO or similar organization indicating its willingness to support the proposal is strongly encouraged).

Software developed under the TTP designation is not required to be open source. However, if open source software is developed, it should be released under the open source license listed by the Open Source Initiative (http://www.opensource.org/). If software will not be open source, a strong case must be provided justifying this approach. Software developers must demonstrate utilization of vulnerability analysis scanning tools throughout the development process and describe the software assurance best practices that will be followed.

Questions regarding the Transition to Practice (TTP) designation should be addressed directly to SaTC Program Officer Victor Piotrowski (vpiotrow@nsf.gov) in the Office of Advanced Cyberinfrastructure (OAC).

Cybersecurity Education (EDU) Designation

On occasion, the results of SaTC-funded research lead to widespread changes in our understanding of the fundamentals of cybersecurity that can, in turn, lead to fundamentally new ways to motivate and educate students about cybersecurity. Proposals submitted to this designation leverage successful results from previous and current basic research in cybersecurity and research on student learning, both in terms of intellectual merit and broader impacts, to address the challenge of expanding existing educational opportunities and resources in cybersecurity. This might include but is not limited to the following efforts:

- Based on the results of previous and current basic research in cybersecurity, define a cybersecurity body of knowledge and establish curricular recommendations for new courses (both traditional and online), degree programs, and educational pathways leading to wide adoption nationally;
- Evaluate the effects of these curricula on student learning;
- Encourage the participation of a broad and diverse population in Cybersecurity Education;
- Develop virtual laboratories to promote collaboration and resource sharing in Cybersecurity Education;
- Develop partnerships between centers of research in cybersecurity and institutions of higher education that lead to improved models for the integration of research experiences into cybersecurity degree programs;
- Develop and evaluate the effectiveness of cybersecurity competitions, games, and other outreach and retention activities; and
- Conduct research that advances improvements in teaching and student learning in cybersecurity and, where possible, focuses on broadening participation.

Cybersecurity Education proposal budgets are limited to $300,000 and their durations are limited to two years.

Questions about Cybersecurity Education proposals should be addressed directly to SaTC Program Officer Victor Piotrowski (vpiotrow@nsf.gov) in the Directorate for Education and Human Resources (EHR).

SaTC PI MEETINGS

The SaTC program plans to host PI meetings every other year with participation from all active SaTC projects. This meeting will be a community-wide event with representatives from federal agencies, academia, industry, and international institutions. Principal investigators from all solicitation designations are expected to participate in these meetings.

For Small, Medium and Education awards, one or more project representatives (PI/co-PI/senior researcher, or NSF-approved replacement) must attend the first PI meeting held after the beginning of the award. For Frontier awards, one or more project representatives (PI/co-PI/senior researcher, or NSF-approved replacement) must attend every PI meeting held throughout the duration of the grant. These requirements apply to a project, rather than to an institution. So, participation of one of the PIs from a collaborative project is required, but attendance of a PI from every institution participating in that collaborative project is not required.

EMBEDDED REU SUPPLEMENTS

The Research Experiences for Undergraduates (REU): Sites and Supplements solicitation (NSF 13-542) gives instructions for embedding a request for a REU Supplement in a proposal. Proposers are invited to embed a request for a REU Supplement in the typical amount for one year only according to standard guidelines (detailed below). The amounts of the REU Supplements do not count against the budget limitations described in this solicitation for the Small, Medium, and Frontier project classes.

For single investigator projects, SaTC REU supplemental funding requests should typically be for no more than two students for one year. Research teams funded through multi-investigator projects may request support for a larger number of students, commensurate with the size and nature of their projects. For example, for projects involving two principal investigators, REU supplemental funding is typically requested for about four undergraduates for one year. Requests for larger numbers of students should be accompanied by detailed justifications.
SaTC expects to provide up to $8,000 per student per year through the REU supplemental support mechanism. As described in the REU program solicitation (NSF 13-542), indirect costs (F&A) are not allowed on Participant Support Costs in REU Site or REU Supplement budgets.

REU stipend support is one way to retain talented students in undergraduate education, while providing meaningful research experiences. The participation of students from groups underrepresented in cybersecurity -- underrepresented minorities, women and persons with disabilities -- is strongly encouraged. In addition, SaTC encourages REU supplements that specifically afford US veterans an opportunity to engage in meaningful research experiences.

SaTC REU supplemental funding requests must describe results of any previous such support, including students supported, papers published, etc. Other factors influencing the supplemental funding decisions include the number of REU requests submitted by any one principal investigator across all of her/his NSF grants.

Investigators are encouraged to refer to the REU program solicitation (NSF 13-542) for detailed information concerning submission requirements. For questions, contact one of the Cognizant Program Officers listed in this solicitation.

III. AWARD INFORMATION

In FY 2018, NSF anticipates approximately 10 Education awards, 50 Small awards, 25 Medium awards and 1-2 Frontier awards.

Small STARSS projects selected for joint funding by NSF and SRC will be funded through separate NSF and SRC funding instruments. For each such project, NSF support will be provided via an NSF grant and SRC support will be provided via an SRC contract. (Please note: The budget submitted with the proposal should include all necessary project funds without regard to the two funding organizations; NSF and SRC will inform selected PIs of the breakdown in funding between the two organizations, and will request revised budgets as appropriate.)

IV. ELIGIBILITY INFORMATION

Who May Submit Proposals:

Proposals may only be submitted by the following:

- Universities and Colleges - Universities and two- and four-year colleges (including community colleges) accredited in, and having a campus located in, the US acting on behalf of their faculty members. Such organizations also are referred to as academic institutions.
- Non-profit, non-academic organizations: Independent museums, observatories, research labs, professional societies and similar organizations in the U.S. associated with educational or research activities.

Who May Serve as PI:

PIs, co-PIs or other senior project personnel must hold primary and full-time paid appointments in research or teaching positions at US-based campuses/offices of eligible organizations.

Limit on Number of Proposals per Organization:

There are no restrictions or limits.

Limit on Number of Proposals per PI or Co-PI: 5

An individual can participate as a PI, co-PI or senior personnel on no more than five SaTC proposals. There is a limit of:

- two proposals designated as CORE and/or STARSS (across Small, Medium, and Frontier); and
- two proposals designated as TTP (either Small or Medium); and
- one proposal designated as EDU.

These limits apply per year to Small, Medium, Frontier and Education proposals in response to this solicitation, and are unrelated to any limits imposed in other NSF solicitations. Note, for example, that you may NOT submit two proposals to SaTC CORE, and three to STARSS, but you may submit one proposal to SaTC CORE, another to STARSS, two to TTP and one to EDU.

These eligibility constraints will be strictly enforced in order to treat everyone fairly and consistently. In the event that an individual exceeds this limit, proposals received within the limit will be accepted based on earliest date and time of proposal submission. No exceptions will be made.

Additional Eligibility Info:

For US universities and two- and four-year colleges, and non-profit, non-academic organizations with overseas campuses/offices, this solicitation restricts eligibility to research activities using the facilities, equipment, and other resources of the campuses/offices located in the US only.

Further, subawards are not permitted to overseas campuses/offices of US-based proposing organizations.
V. PROPOSAL PREPARATION AND SUBMISSION INSTRUCTIONS

A. Proposal Preparation Instructions

Full Proposal Preparation Instructions: Proposers may opt to submit proposals in response to this Program Solicitation via Grants.gov or via the NSF FastLane system.

- Full proposals submitted via FastLane: Proposals submitted in response to this program solicitation should be prepared and submitted in accordance with the general guidelines contained in the NSF Proposal & Award Policies & Procedures Guide (PAPPG). The complete text of the PAPPG is available electronically on the NSF website at: https://www.nsf.gov/publications/pub_summ.jsp?ods_key=pappg. Paper copies of the PAPPG may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov. Proposers are reminded to identify this program solicitation number in the program solicitation block on the NSF Cover Sheet For Proposal to the National Science Foundation. Compliance with this requirement is critical to determining the relevant proposal processing guidelines. Failure to submit this information may delay processing.

- Full proposals submitted via Grants.gov: Proposals submitted in response to this program solicitation via Grants.gov should be prepared and submitted in accordance with the NSF Grants.gov Application Guide: A Guide for the Preparation and Submission of NSF Applications via Grants.gov. The complete text of the NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: (https://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide). To obtain copies of the Application Guide and Application Forms Package, click on the Apply tab on the Grants.gov site, then click on the Apply Step 1: Download a Grant Application Package and Application Instructions link and enter the funding opportunity number, (the program solicitation number without the NSF prefix) and press the Download Package button. Paper copies of the Grants.gov Application Guide also may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

In determining which method to utilize in the electronic preparation and submission of the proposal, please note the following:

Collaborative Proposals. All collaborative proposals submitted as separate submissions from multiple organizations must be submitted via the NSF FastLane system. PAPPG Chapter II.D.3 provides additional information on collaborative proposals.

See PAPPG Chapter II.C.2 for guidance on the required sections of a full research proposal submitted to NSF. Please note that the proposal preparation instructions provided in this program solicitation may deviate from the PAPPG instructions.

The following information SUPPLEMENTS (note that it does NOT replace) the guidelines provided in the NSF Proposal & Award Policies & Procedures Guide (PAPPG).

All proposals must be submitted to the CNS division, regardless of the proposal's designation.

Cover Page: PIs submitting Grant Opportunities for Academic Liaison with Industry (GOALI) proposals should select "GOALI" from the Type of Proposal drop down list in the Proposal Preparation module in FastLane or Grants.gov. Please see Chapter II.E.4 of the PAPPG for additional information about preparing a GOALI proposal: https://www.nsf.gov/pubs/policydocs/pappg17_1/pappg_2.jsp#IIIE4.

Proposal Titles:

Proposal titles must begin with the acronym SaTC, followed by a colon, and the acronym that indicates the designation. Select an acronym from the following list:

- Secure and Trustworthy Cyberspace core research designation: CORE;
- Secure, Trustworthy, Assured and Resilient Semiconductors and Systems designation: STARSS;
- Transition to Practice designation: TTP; and
- Cybersecurity Education designation: EDU.

CORE proposals can be Small, Medium or Frontier. The acronym, CORE, should be followed by a colon, then the project class (Small, Medium or Frontier) followed by a colon, and then the title of the proposed project. For example, if you are submitting a CORE Small proposal, the title of your proposal would be SaTC: CORE: Small: Title.

If you submit a proposal as part of a set of collaborative proposals, the title of the proposal should begin with the acronym that indicates the relevant designation followed by a colon, then the project class followed by a colon, then "Collaborative" followed by a colon, and then the title. For example, if you are submitting a collaborative set of proposals for a Medium project to the Secure and Trustworthy Cyberspace Core research (CORE) designation, the title of each proposal would be SaTC: CORE: Medium: Collaborative: Title.

STARSS proposals must be in the Small project class. Therefore, valid STARSS-specific title styles are:

SaTC: STARSS: Small: Title
SaTC: STARSS: Small: Collaborative: Title

TTP proposals must be in the Small or Medium project classes. Therefore, valid TTP-specific title styles are:

SaTC: TTP: Small: Title
SaTC: TTP: Small: Collaborative: Title
SaTC: TTP: Medium: Title
All Frontier projects must include meaningful Broadening Participation in Computing (BPC) plans within the Broader Impacts sections of the project descriptions. These plans must seek to increase the participation of underrepresented groups in computing. Furthermore, all SaTC projects are encouraged to include meaningful BPC plans within the Broader Impacts sections. If the project includes a BPC plan, this plan should be clearly identifiable within the project description text and should represent a clear, actionable effort with an evaluation plan. If a PI plans to become a part of an institutional broadening participation effort, then the PI must report on his/her specific contribution within that effort. Proposals that plan interventions that appeal to “all students” can be considered a broadening participation effort if the content is relevant to specific, targeted underrepresented groups within the student body. Examples of activities for BPC can be found on the CISE BPC webpage.

Supplementary Documents:

In the Supplementary Documents Section, upload the following:

1. A list of Project Personnel and Partner Institutions (Note: In collaborative proposals, the lead institution should provide this information for all participants):

 - Mary Smith; XYZ University; PI
 - John Jones; University of PQR; Senior Personnel
 - Jane Brown; XYZ University; Postdoc
 - Bob Adams; ABC Community College; Paid Consultant
 - Susan White; DEF Corporation; Unpaid Collaborator
 - Tim Green; ZZZ University; Subawardee

2. Collaboration Plans for Small and Medium (if applicable) and Frontier Proposals:

 Since the success of collaborative research efforts is known to depend on thoughtful coordination mechanisms that regularly bring together the various participants of the project, all Medium proposals that include more than one investigator and all Frontier proposals must include a Collaboration Plan of up to 2 pages. The length of and degree of detail provided in the Collaboration Plan should be commensurate with the complexity of the proposed project. Where appropriate, the Collaboration Plan might include: 1) the specific roles of the project participants in all organizations involved; 2) information on how the project will be managed across all the investigators, institutions, and/or disciplines; 3) identification of the specific coordination mechanisms that will enable cross-investigator, cross-institution, and/or cross-discipline scientific integration (e.g., yearly workshops, graduate student exchange, project meetings at conferences, use of the grid for video conferences, software repositories, etc.), and 4) specific references to the budget line items that support collaboration and coordination mechanisms. If a Frontier proposal, or a Medium proposal with more than one investigator, does not include a Collaboration Plan of up to 2 pages, that proposal will be returned without review.

Small proposals that include more than one institution may include a Collaboration Plan of up to 2 pages.

3. Data Management Plan (required):

 Proposals must include a supplementary document of no more than two pages labeled “Data Management Plan.” The data management plan must be substantive and specific to the project and should address all project-relevant aspects of data privacy and security. In addition to addressing how the project will conform to NSF’s policy on the dissemination and sharing of research results, the Data Management Plan should address the following topics if they are relevant to the project:

 - Handling of sensitive data: sensitivity of the data to be collected, ethics of data collection and identification of harms that could arise from its collection or inadvertent dissemination, techniques that will be used to protect the privacy of individuals and organizations associated with the data; and plans to request IRB approval for data collection, aggregation and analysis.
 - Data sharing: methods for providing other researchers with controlled access to datasets and the time period during which data will be available. If the project will develop software or hardware artifacts (e.g., specific open source licenses) and the physical location of the data repository (e.g., commercial cloud, private server, campus server), but also the method by which other researchers may access these products of the project (e.g., GitHub repository).
 - Authorization for data access and protection of data: policies for authorizing access to the data and techniques (including
security protections) that will be used to prevent the unauthorized dissemination of the data.

For additional information on the Dissemination and Sharing of Research Results, see: https://www.nsf.gov/bfa/dias/policy/dmp.jsp.

(4) Topic Areas:

SaTC proposals are grouped into "review panels" of related proposals for merit review and discussion. Panelists are selected for their expertise in the panel topic area. To help SaTC program officers select the most appropriate review panel for your proposal, PIs submitting Small, Medium or Frontier proposals (but not Cybersecurity Education projects) should identify a primary and, optionally, a secondary topic area. The suggested topic areas indicate the areas of panelist expertise that are most important for understanding the innovative aspects of the proposal.

For example, for a proposal that uses hardware to improve the security of wireless networking, the suggested topic areas might be "wireless networking" or "hardware," or both -- with one area as primary and the other as secondary. Choosing which area to recommend as primary would depend on whether the hardware aspect or the wireless networking aspect of the proposal is the more novel.

A supplementary document titled "Topic Areas" should identify a primary (and optionally a secondary) topic area from the following list:

- Access control
- Authentication
- Biometrics
- Cryptography, theory
- Cryptography, applied
- Cyber-physical systems (CPS)
- Data science
- Forensics
- Formal methods
- Hardware, security architecture
- Hardware, security design
- Information trustworthiness
- Intrusion detection
- Language based security
- Mathematics and statistics
- Privacy, theory
- Privacy, applied
- Social networks
- Social, behavioral and economic science
- Software
- Systems
- Usability and human interaction
- Wired networking
- Wireless networking

(5) Documentation of collaborative arrangements of significance to the proposal through Letters of Collaboration:

There are two types of collaboration, one involving individuals/organizations that are included in the budget, and the other involving individuals/organizations that are not included in the budget. Collaborations that are included in the budget should be described in the Project Description. Any substantial collaboration with individuals/organizations not included in the budget should be described in the Facilities, Equipment and Other Resources section of the proposal (see PAPPG Chapter II.C.2.i). In either case, whether or not the collaborator is included in the budget, a letter of collaboration from each named participating organization other than the submitting lead, non-lead, and/or subawardee institutions must be provided at the time of submission of the proposal. Such letters must explicitly state the nature of the collaboration, appear on the organization’s letterhead and be signed by the appropriate organizational representative. These letters must not otherwise deviate from the restrictions and requirements set forth in the PAPPG Chapter II.C.2.j.

Please note that letters of support may not be submitted. Such letters do not document collaborative arrangements of significance to the project, but primarily convey a sense of enthusiasm for the project and/or highlight the qualifications of the PI or co-PI. Reviewers will be instructed to ignore these letters of support in reviewing the merits of the proposal.

(6) Other specialized information:

RUI Proposals: PIs from predominantly undergraduate institutions should include a Research in Undergraduate Institutions (RUI) Impact Statement and Certification of RUI Eligibility in this Section.

GOALI proposals: PIs submitting GOALI proposals should include industry-university agreement letters on intellectual property in this section.

No other Supplementary Documents, except as permitted by the NSF Proposal & Award Policies & Procedures Guide, are allowed.

Single Copy Documents:

Collaborators and Other Affiliations Information: In lieu of the instructions specified in the PAPPG, Collaborators and Other Affiliations
Information should be submitted as follows:

For this solicitation, the Collaborators & Other Affiliations (COA) information specified in the PAPPG should be submitted using the spreadsheet template found at https://www.nsf.gov/bfa/dias/policy/coa.jsp. For each proposal, a completed spreadsheet for each PI, co-PI, and Senior Personnel should be uploaded directly into Fastlane in .xls or .xlsx format as a “Collaborator and Other Affiliations” Single Copy Document. NSF staff use this information in the merit review process to help manage reviewer selection; the spreadsheet will ensure the COA information has a common, searchable format. Submitters using grants.gov may upload this document as a PDF.

Submission Checklist:

In an effort to assist proposal preparation, the following checklists are provided as a reminder of the items that should be checked before submitting a SaTC proposal to this solicitation. These are a summary of the requirements described above. For the items marked with (RWR), the proposal will be returned without review if the required item is non-compliant at the submission deadline. Note that there are five lists: (1) for all proposals, unique to this solicitation; (2) for all proposals, selected items from the PAPPG; (3) additional requirements for Small proposals; (4) additional requirements for Medium proposals; and (5) additional requirements for Frontier proposals.

(1) For all proposals, regardless of size or designation:

- Must include the Project Personnel and Partner Institutions list as a supplementary document. For collaborative proposals, the lead institution should include a combined list for all project personnel.
- Should include Collaborators & Other Affiliations (COA) for each PI, co-PI, and Senior Personnel, using the spreadsheet template to upload as Single Copy COA Documents.
- Should include Topic Areas as a supplementary document.
- Letters of Collaboration are permitted as supplementary documents. Letters of Support are not allowed; reviewers will be instructed not to consider these letters in reviewing the merits of the proposal.

(2) The following items are not specific to this solicitation, but are included as reminders, and apply to all NSF proposals unless otherwise noted by the solicitations (see the PAPPG for further information). This is a summary of key items, but does not replace the complete set of requirements in the PAPPG.

- (RWR) Within the Project Description, a section labeled "Broader Impacts".
- (RWR) Within the Project Description, a description of "Results from Prior NSF Support", including intellectual merit and broader impacts (or a specific statement indicating that the PI has no prior NSF support).
- (RWR) If the budget includes postdoctoral researchers, a one-page Postdoctoral Researcher Plan must be included as a Supplementary Document.
- (RWR) A Data Management Plan, not to exceed two pages, must be included.

(3) For Small proposals:

- The title must start with one of the following strings:
 - SaTC: CORE: Small:
 - SaTC: CORE: Small: Collaborative:
 - SaTC: STARSS: Small:
 - SaTC: STARSS: Small: Collaborative:
 - SaTC: TTP: Small:
 - SaTC: TTP: Small: Collaborative:
- In addition to the above title prefixes, proposals from PIs in institutions that have RUI (Research in Undergraduate Institutions) eligibility should include "RUI:" immediately before the proposal title, for example, SaTC: CORE: Small: RUI: Title. Similarly, PIs submitting Grant Opportunities for Academic Liaison with Industry (GOALI) proposals should select "GOALI" from the Type of Proposal drop down list in the Proposal Preparation module in FastLane or Grants.gov; and include "GOALI:" immediately before the proposal title, for example, SaTC: CORE: Small: GOALI: Title.
- (RWR) Maximum budget shown on the cover page and on the budget sheets must not exceed $500,001, plus funds for embedded REU supplements.
- (RWR) The Project Description is limited to no more than 15 pages.
- If more than one institution is involved, a collaboration plan (up to 2 pages) may be provided as a supplementary document.
- (RWR) For STARSS-designated proposals, the proposal must also be submitted to NSF as well as the Semiconductor Research Corporation.

(4) For Medium proposals:

- The title must start with one of the following strings:
 - SaTC: CORE: Medium:
 - SaTC: CORE: Medium: Collaborative:
 - SaTC: TTP: Medium:
 - SaTC: TTP: Medium: Collaborative:
- In addition to the above title prefixes, proposals from PIs in institutions that have RUI (Research in Undergraduate Institutions) eligibility should include "RUI:" immediately before the proposal title, for example, SaTC: CORE: Medium: RUI: Title. Similarly, PIs submitting Grant Opportunities for Academic Liaison with Industry (GOALI) proposals should select "GOALI" from the Type of Proposal drop down list in the Proposal Preparation module in FastLane or Grants.gov; and include "GOALI:" immediately before the proposal title, for example, SaTC: CORE: Medium: GOALI: Title.
- (RWR) Maximum budget shown on the cover page and on the budget sheets must be at least $500,001 and must not exceed $1,200,000, plus funds for embedded REU supplements.
- (RWR) The Project Description is limited to no more than 15 pages.
- (RWR) If there is more than one investigator, a collaboration plan (up to 2 pages) must be provided as a supplementary document, even if all investigators are affiliated with the same institution.

(5) For Frontier proposals:
The title must start with one of the following strings:
- SaTC: CORE: Frontier:
- SaTC: CORE: Frontier: Collaborative:

In addition to the above title prefixes, proposals from PIs in institutions that have RUI (Research in Undergraduate Institutions) eligibility should include "RUI:" immediately before the proposal title, for example, SaTC: CORE: Frontier: RUI: Title.

Similarly, PIs submitting Grant Opportunities for Academic Liaison with Industry (GOALI) proposals should select "GOALI" from the Type of Proposal drop down list in the Proposal Preparation module in FastLane or Grants.gov; and include "GOALI:" immediately before the proposal title, for example, SaTC: CORE: Frontier: GOALI: Title.

(RWR) Maximum budget shown on the cover page and on the budget sheets must be at least $5,00,000 and must not exceed $10,00,000, plus funds for embedded REU supplements.

(RWR) The Project Description is limited to no more than 20 pages.

(RWR) A collaboration plan (up to 2 pages) must be provided as a supplementary document, even if all investigators are affiliated with the same institution.

(RWR) A Broadening Participation in Computing (BPC) plan must be included in the Broader Impacts section of the Project Description.

For Education proposals:

- The title must start with one of the following strings:
 - SaTC: EDU:
 - SaTC: EDU: Collaborative:

In addition to the above title prefixes, proposals from PIs in institutions that have RUI (Research in Undergraduate Institutions) eligibility should include "RUI:" immediately before the proposal title, for example, SaTC: EDU: RUI: Title. Similarly, PIs submitting Grant Opportunities for Academic Liaison with Industry (GOALI) proposals should select "GOALI" from the Type of Proposal drop down list in the Proposal Preparation module in FastLane or Grants.gov; and include "GOALI:" immediately before the proposal title, for example, SaTC: EDU: GOALI: Title.

(RWR) Maximum budget shown on the cover page and on the budget sheets must not exceed $300,000, plus funds for embedded REU supplements.

(RWR) The Project Description is limited to no more than 15 pages.

If more than one institution is involved, a collaboration plan (up to 2 pages) may be provided as a supplementary document. If only one institution is involved, a collaboration plan is not permitted.

Proposals that do not comply with the requirements marked as RWR will be returned without review.

B. Budgetary Information

Cost Sharing:

Inclusion of voluntary committed cost sharing is prohibited.

Other Budgetary Limitations:

Budgets for Education, Small, and Medium projects must include funding for one or more project representatives (PI/co-PI/senior researcher or NSF-approved replacement) to attend the first SaTC PI meeting held after the beginning of the award. Budgets for Frontier projects must include funding for one or more project representatives (PI/co-PI/senior researcher or NSF-approved replacement) to attend a SaTC PI meeting to be held every other year for the duration of the project. The first PI meeting for awards made under this solicitation is expected in 2019. These requirements for PI meeting attendance apply to collaborative proposals as a whole, not to each part of a project.

C. Due Dates

- **Submission Window Date(s)** (due by 5 p.m. submitter's local time):
 - October 03, 2017 - October 10, 2017
 - MEDIUM Projects
 - October 13, 2017 - October 20, 2017
 - FRONTIER Projects
 - November 01, 2017 - November 15, 2017
 - SMALL Projects
 - December 06, 2017 - December 13, 2017
 - CYBERSECURITY EDUCATION Projects

D. FastLane/Grants.gov Requirements

For Proposals Submitted Via FastLane:

To prepare and submit a proposal via FastLane, see detailed technical instructions available at: https://www.fastlane.nsf.gov/a1/newstan.htm. For FastLane user support, call the FastLane Help Desk at 1-800-673-
A comprehensive description of the Foundation's merit review process is available on the NSF website at: https://www.nsf.gov/bfa/dias/policy/merit_review/.

Proposers should also be aware of core strategies that are essential to the fulfillment of NSF's mission, as articulated in Investing in Science, Engineering, and Education for the Nation's Future: NSF Strategic Plan for 2014-2018. These strategies are integrated in the program planning and implementation process, of which proposal review is one part. NSF's mission is particularly well-implemented through the integration of research and education and broadening participation in NSF programs, projects, and activities.

One of the strategic objectives in support of NSF's mission is to foster integration of research and education through the programs, projects, and activities it supports at academic and research institutions. These institutions must recruit, train, and prepare a diverse STEM workforce to advance the frontiers of science and participate in the U.S. technology-based economy. NSF's contribution to the national innovation ecosystem is to provide cutting-edge research under the guidance of the Nation's most creative scientists and engineers. NSF also supports development of a strong science, technology, engineering, and mathematics (STEM) workforce by investing in building the knowledge that informs improvements in STEM teaching and learning.

NSF's mission calls for the broadening of opportunities and expanding participation of groups, institutions, and geographic regions that are underrepresented in STEM disciplines, which is essential to the health and vitality of science and engineering. NSF is committed to this principle of diversity and deems it central to the programs, projects, and activities it considers and supports.

A. Merit Review Principles and Criteria

The National Science Foundation strives to invest in a robust and diverse portfolio of projects that creates new knowledge and enables breakthroughs in understanding across all areas of science and engineering research and education. To identify which projects to support, NSF relies on a merit review process that incorporates consideration of both the technical aspects of a proposed project and its potential to contribute more broadly to advancing NSF's mission "to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense; and for other purposes." NSF makes every effort to conduct a fair, competitive, transparent merit review process for the selection of projects.

1. Merit Review Principles

These principles are to be given due diligence by PIs and organizations when preparing proposals and managing projects, by reviewers when reading and evaluating proposals, and by NSF program staff when determining whether or not to recommend proposals for funding and while overseeing awards. Given that NSF is the primary federal agency charged with nurturing and supporting excellence
in basic research and education, the following three principles apply:

- All NSF projects should be of the highest quality and have the potential to advance, if not transform, the frontiers of knowledge.
- NSF projects, in the aggregate, should contribute more broadly to achieving societal goals. These “Broader Impacts” may be accomplished through the research itself, through activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. The project activities may be based on previously established and/or innovative methods and approaches, but in either case must be well justified.
- Meaningful assessment and evaluation of NSF funded projects should be based on appropriate metrics, keeping in mind the likely correlation between the effect of broader impacts and the resources provided to implement projects. If the size of the activity is limited, evaluation of that activity in isolation is not likely to be meaningful. Thus, assessing the effectiveness of these activities may best be done at a higher, more aggregated, level than the individual project.

With respect to the third principle, even if assessment of Broader Impacts outcomes for particular projects is done at an aggregated level, PIs are expected to be accountable for carrying out the activities described in the funded project. Thus, individual projects should include clearly stated goals, specific descriptions of the activities that the PI intends to do, and a plan in place to document the outputs of those activities.

These three merit review principles provide the basis for the merit review criteria, as well as a context within which the users of the criteria can better understand their intent.

2. Merit Review Criteria

All NSF proposals are evaluated through use of the two National Science Board approved merit review criteria. In some instances, however, NSF will employ additional criteria as required to highlight the specific objectives of certain programs and activities.

The two merit review criteria are listed below. Both criteria are to be given full consideration during the review and decision-making processes; each criterion is necessary but neither, by itself, is sufficient. Therefore, proposers must fully address both criteria. (PAPPG Chapter II.C.2.d(i). contains additional information for use by proposers in development of the Project Description section of the proposal). Reviewers are strongly encouraged to review the criteria, including PAPPG Chapter II.C.2.d(i), prior to the review of a proposal.

When evaluating NSF proposals, reviewers will be asked to consider what the proposers want to do, why they want to do it, how they plan to do it, how they will know if they succeed, and what benefits could accrue if the project is successful. These issues apply both to the technical aspects of the proposal and the way in which the project may make broader contributions. To that end, reviewers will be asked to evaluate all proposals against two criteria:

- Intellectual Merit: The Intellectual Merit criterion encompasses the potential to advance knowledge; and
- Broader Impacts: The Broader Impacts criterion encompasses the potential to benefit society and contribute to the achievement of specific, desired societal outcomes.

The following elements should be considered in the review for both criteria:

1. What is the potential for the proposed activity to
 a. Advance knowledge and understanding within its own field or across different fields (Intellectual Merit); and
 b. Benefit society or advance desired societal outcomes (Broader Impacts)?
2. To what extent do the proposed activities suggest and explore creative, original, or potentially transformative concepts?
3. Is the plan for carrying out the proposed activities well-reasoned, well-organized, and based on a sound rationale? Does the plan incorporate a mechanism to assess success?
4. How well qualified is the individual, team, or organization to conduct the proposed activities?
5. Are there adequate resources available to the PI (either at the home organization or through collaborations) to carry out the proposed activities?

Broader impacts may be accomplished through the research itself, through the activities that are directly related to specific research projects, or through activities that are supported by, but are complementary to, the project. NSF values the advancement of scientific knowledge and activities that contribute to achievement of societally relevant outcomes. Such outcomes include, but are not limited to: full participation of women, persons with disabilities, and underrepresented minorities in science, technology, engineering, and mathematics (STEM); improved STEM education and educator development at any level; increased public scientific literacy and public engagement with science and technology; improved well-being of individuals in society; development of a diverse, globally competitive STEM workforce; increased partnerships between academia, industry, and others; improved national security; increased economic competitiveness of the United States; and enhanced infrastructure for research and education.

Proposers are reminded that reviewers will also be asked to review the Data Management Plan and the Postdoctoral Researcher Mentoring Plan, as appropriate.

Additional Solicitation Specific Review Criteria

For Frontier proposals, reviewers will be asked to apply the existing Merit Review Criteria for Broader Impacts to the Broadening Participation in Computing (BPC) plan:

- What is the potential for the BPC plan to have a measurable impact on underrepresentation?
- Is the BPC plan well-reasoned, well-organized and based on a sound rationale?
- Is there a well-defined mechanism for assessing its success?
- Does the PI have adequate resources to carry out these activities?
- How well-qualified is the individual, team or organization to implement the BPC plan?

For Frontier and relevant Medium proposals, reviewers will be asked to:

- Comment on the extent to which the project scope justifies the level of investment requested, and the degree to which the Collaboration Plan (if required) adequately demonstrates that the participating investigators will work synergistically to
accomplish the project objectives.
- Comment on whether key personnel, and especially lead PIs, have allocated adequate time for both their individual technical contributions and the leadership of collaborative activities necessary to realize the synergistic effects of larger-scale research.

Proposals submitted with the **Secure, Trustworthy, Assured and Resilient Semiconductors and Systems (STARSS)** designation will be evaluated with careful attention to the following:
- A primary focus on hardware-related problems and approaches, which may include the software-hardware interface, at levels that may range from device to system;
- The risk that the proposed solution has potential to address; and
- The economic and business context in which the proposed solution will be implemented.

Proposals submitted with the **Transitions to Practice (TTP)** designation will be evaluated with careful attention to the following:
- The degree to which the project plan addresses system development milestones and an evaluation plan for the working system;
- The degree to which a target user group or organization who (that) will serve as an early adopter of the technology is identified;
- The deployment plan for implementing the capability or prototype system into an operational environment;
- The novelty of the intended system, software or architecture.
- The composition of the proposal team, which should demonstrate not only technical expertise but also skills in project management and systems development;
- The appropriateness of the budget for the effort; and
- The extent of collaboration with the university Technology Transfer Office (TTO) or similar organization from the PI's institution.

B. Review and Selection Process

Proposals submitted in response to this program solicitation will be reviewed by Ad hoc Review and/or Panel Review.

Reviewers will be asked to evaluate proposals using two National Science Board approved merit review criteria and, if applicable, additional program specific criteria. A summary rating and accompanying narrative will be completed and submitted by each reviewer. The Program Officer assigned to manage the proposal's review will consider the advice of reviewers and will formulate a recommendation.

For proposals submitted to the STARSS designation, NSF will manage and conduct the review process of proposals submitted in accordance with NSF standards and procedures. The review and award recommendations will be coordinated by a Joint NSF and SRC Working Group (JWG) of program officers from both NSF and SRC. Relevant information about proposals and reviews of proposals will be shared between the participating organizations as appropriate. The JWG will recommend meritorious proposals for award at appropriate funding levels.

After scientific, technical and programmatic review and consideration of appropriate factors, the NSF Program Officer recommends to the cognizant Division Director whether the proposal should be declined or recommended for award. NSF strives to be able to tell applicants whether their proposals have been declined or recommended for funding within six months. Large or particularly complex proposals or proposals from new awardees may require additional review and processing time. The time interval begins on the deadline or target date, or receipt date, whichever is later. The interval ends when the Division Director acts upon the Program Officer's recommendation.

After programmatic approval has been obtained, the proposals recommended for funding will be forwarded to the Division of Grants and Agreements for review of business, financial, and policy implications. After an administrative review has occurred, Grants and Agreements Officers perform the processing and issuance of a grant or other agreement. Proposers are cautioned that only a Grants and Agreements Officer may make commitments, obligations or awards on behalf of NSF or authorize the expenditure of funds. No commitment on the part of NSF should be inferred from technical or budgetary discussions with a NSF Program Officer. A Principal Investigator or organization that makes financial or personnel commitments in the absence of a grant or cooperative agreement signed by the NSF Grants and Agreements Officer does so at their own risk.

Once an award or declination decision has been made, Principal Investigators are provided feedback about their proposals. In all cases, reviews are treated as confidential documents. Verbatim copies of reviews, excluding the names of the reviewers or any reviewer-identifying information, are sent to the Principal Investigator/Project Director by the Program Officer. In addition, the proposer will receive an explanation of the decision to award or decline funding.

VII. AWARD ADMINISTRATION INFORMATION

A. Notification of the Award

Notification of the award is made to the submitting organization by a Grants Officer in the Division of Grants and Agreements. Organizations whose proposals are declined will be advised as promptly as possible by the cognizant NSF Program administering the program. Verbatim copies of reviews, not including the identity of the reviewer, will be provided automatically to the Principal Investigator. (See Section VI.B. for additional information on the review process.)

B. Award Conditions
An NSF award consists of: (1) the award notice, which includes any special provisions applicable to the award and any numbered amendments thereto; (2) the budget, which indicates the amounts, by categories of expense, on which NSF has based its support (or otherwise communicates any specific approvals or disapprovals of proposed expenditures); (3) the proposal referenced in the award notice; (4) the applicable award conditions, such as Grant General Conditions (GC-1)*; or Research Terms and Conditions* and (5) any announcement or other NSF issuance that may be incorporated by reference in the award notice. Cooperative agreements also are administered in accordance with NSF Cooperative Agreement Financial and Administrative Terms and Conditions (CA-FATC) and the applicable Programmatic Terms and Conditions. NSF awards are electronically signed by an NSF Grants and Agreements Officer and transmitted electronically to the organization via e-mail.

*These documents may be accessed electronically on NSF’s Website at https://www.nsf.gov/awards/managing/award_conditions.jsp?org=NSF. Paper copies may be obtained from the NSF Publications Clearinghouse, telephone (703) 292-7827 or by e-mail from nsfpubs@nsf.gov.

C. Reporting Requirements

For all multi-year grants (including both standard and continuing grants), the Principal Investigator must submit an annual project report to the cognizant Program Officer no later than 90 days prior to the end of the current budget period. (Some programs or awards require submission of more frequent project reports). No later than 120 days following expiration of a grant, the PI also is required to submit a final project report, and a project outcomes report for the general public.

Failure to provide the required annual or final project reports, or the project outcomes report, will delay NSF review and processing of any future funding increments as well as any pending proposals for all identified PIs and co-PIs on a given award. PIs should examine the formats of the required reports in advance to assure availability of required data.

PIs are required to use NSF's electronic project-reporting system, available through Research.gov, for preparation and submission of annual and final project reports. Such reports provide information on accomplishments, project participants (individual and organizational), publications, and other specific products and impacts of the project. Submission of the report via Research.gov constitutes certification by the PI that the contents of the report are accurate and complete. The project outcomes report also must be prepared and submitted using Research.gov. This report serves as a brief summary, prepared specifically for the public, of the nature and outcomes of the project. This report will be posted on the NSF website exactly as it is submitted by the PI.

VIII. AGENCY CONTACTS

Please note that the program contact information is current at the time of publishing. See program website for any updates to the points of contact.

General inquiries regarding this program should be made to:

- Nina Amla, Program Director, CISE/CCF, 1110, telephone: (703) 292-8910, email: namla@nsf.gov
- Dan Cosley, Program Director, CISE/IIS, 1125, telephone: (703) 292-8491, email: dccosley@nsf.gov
- Sol Greenspan, Program Director, CISE/CCF, 1115, telephone: (703) 292-8910, email: sgreensp@nsf.gov
- Timothy Hodges, Program Director, MPS/DMS, 1020, telephone: (703) 292-2113, email: thodges@nsf.gov
- Sara Kiesler, Program Director, SBE/SES, 995, telephone: (703) 292-8643, email: skiesler@nsf.gov
IX. OTHER INFORMATION

The NSF website provides the most comprehensive source of information on NSF Directorates (including contact information), programs and funding opportunities. Use of this website by potential proposers is strongly encouraged. In addition, "NSF Update" is an information-delivery system designed to keep potential proposers and other interested parties apprised of new NSF funding opportunities and publications, important changes in proposal and award policies and procedures, and upcoming NSF Grants Conferences. Subscribers are informed through e-mail or the user's Web browser each time new publications are issued that match their identified interests. "NSF Update" also is available on NSF's website.

Grants.gov provides an additional electronic capability to search for Federal government-wide grant opportunities. NSF funding opportunities may be accessed via this mechanism. Further information on Grants.gov may be obtained at http://www.grants.gov.

ABOUT THE NATIONAL SCIENCE FOUNDATION

The National Science Foundation (NSF) is an independent Federal agency created by the National Science Foundation Act of 1950, as amended (42 USC 1861-75). The Act states the purpose of the NSF is "to promote the progress of science; [and] to advance the national health, prosperity, and welfare by supporting research and education in all fields of science and engineering."

NSF funds research and education in most fields of science and engineering. It does this through grants and cooperative agreements to more than 2,000 colleges, universities, K-12 school systems, businesses, informal science organizations and other research organizations throughout the US. The Foundation accounts for about one-fourth of Federal support to academic institutions for basic research.

NSF receives approximately 55,000 proposals each year for research, education and training projects, of which approximately 11,000 are funded. In addition, the Foundation receives several thousand applications for graduate and postdoctoral fellowships. The agency operates no laboratories itself but does support National Research Centers, user facilities, certain oceanographic vessels and Arctic and Antarctic research stations. The Foundation also supports cooperative research between universities and industry, US participation in international scientific and engineering efforts, and educational activities at every academic level.

Facilitation Awards for Scientists and Engineers with Disabilities provide funding for special assistance or equipment to enable persons with disabilities to work on NSF-supported projects. See Grant Proposal Guide Chapter II, Section D.2 for instructions regarding preparation of these types of proposals.

The National Science Foundation has Telephonic Device for the Deaf (TDD) and Federal Information Relay Service (FIRS) capabilities that enable individuals with hearing impairments to communicate with the Foundation about NSF programs, employment or general information. TDD may be accessed at (703) 292-5090 and (800) 281-8749, FIRS at (800) 877-8339.

The National Science Foundation Information Center may be reached at (703) 292-5111.

About the Semiconductor Research Corporation:

The Semiconductor Research Corporation (SRC) is a nonprofit industry consortium that invests, often in partnership with government, in basic university research driven by the science and technology needs of its member companies. Awarded the National Medal of Technology, America's highest recognition for contributions to technology, SRC supports research that advances knowledge related to semiconductors and semiconductor-based systems and insures a pipeline of relevantly educated students. Through sustained funding since 1982, SRC has helped create and maintain a robust university research enterprise focused on an industry that is vital to the U.S. economy. For more information, go to https://www.src.org/.
The National Science Foundation promotes and advances scientific progress in the United States by competitively awarding grants and cooperative agreements for research and education in the sciences, mathematics, and engineering.

To get the latest information about program deadlines, to download copies of NSF publications, and to access abstracts of awards, visit the NSF Website at https://www.nsf.gov.

- **Location:** 4201 Wilson Blvd. Arlington, VA 22230
- **For General Information** (NSF Information Center): (703) 292-5111
- **TDD (for the hearing-impaired):** (703) 292-5090
- **To Order Publications or Forms:**
 - Send an e-mail to: nsfpubs@nsf.gov
 - or telephone: (703) 292-7827
- **To Locate NSF Employees:** (703) 292-5111

PRIVACY ACT AND PUBLIC BURDEN STATEMENTS

The information requested on proposal forms and project reports is solicited under the authority of the National Science Foundation Act of 1950, as amended. The information on proposal forms will be used in connection with the selection of qualified proposals; and project reports submitted by awardees will be used for program evaluation and reporting within the Executive Branch and to Congress. The information requested may be disclosed to qualified reviewers and staff assistants as part of the proposal review process; to proposer institutions/grantees to provide or obtain data regarding the proposal review process, award decisions, or the administration of awards; to government contractors, experts, volunteers and researchers and educators as necessary to complete assigned work; to other government agencies or other entities needing information regarding applicants or nominees as part of a joint application review process, or in order to coordinate programs or policy; and to another Federal agency, court, or party in a court or Federal administrative proceeding if the government is a party. Information about Principal Investigators may be added to the Reviewer file and used to select potential candidates to serve as peer reviewers or advisory committee members. See Systems of Records, NSF-50, “Principal Investigator/Proposal File and Associated Records,” 69 Federal Register 26410 (May 12, 2004), and NSF-51, “Reviewer/Proposal File and Associated Records,” 69 Federal Register 26410 (May 12, 2004). Submission of the information is voluntary. Failure to provide full and complete information, however, may reduce the possibility of receiving an award.

An agency may not conduct or sponsor, and a person is not required to respond to, an information collection unless it displays a valid Office of Management and Budget (OMB) control number. The OMB control number for this collection is 3145-0058. Public reporting burden for this collection of information is estimated to average 120 hours per response, including the time for reviewing instructions. Send comments regarding the burden estimate and any other aspect of this collection of information, including suggestions for reducing this burden, to:

Suzanne H. Plimpton
Reports Clearance Officer
Office of the General Counsel
National Science Foundation
Arlington, VA 22230

The National Science Foundation, 4201 Wilson Boulevard, Arlington, Virginia 22230, USA
Tel: (703) 292-5111, FIRS: (800) 877-8339 | TDD: (800) 281-8749

Text Only