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I. The Issue 

Governments are major supporters of scientific research. Since 2003, the United States 
Federal government spent roughly $60 billion annually (in 2009 dollars) on basic and 
applied research. State and local governments support science directly through their 
support of universities and indirectly through tax breaks (Clemins [2009]). Spending on 
science is increasingly justified based on its economic benefits, like job creation, but 
there are mixed views of the benefits of scientific research. On the one hand, scientific 
research is seen to generate substantial benefits for the communities where it is produced. 
The success of Silicon Valley, the Route 128 corridor in Boston, the Research Triangle 
Park, and Austin are often attributed to the scientific research produced in these 
communities (see, for instance, Dorfman [1983]; Saxenian [1996]; and Feldman and 
Desrochers [2003]). On the other hand, science is often viewed as being “ivory tower,” 
with limited practical value (Prager and Omenn [1980]).1 Even in the scientific 
community, the economic benefits of research are disputed (Macilwain [2010]). 

We distinguish two broad ways in which scientific research can benefit the economy. 
First, science can directly lead to valuable technological innovations like biotechnology or 
nanotechnology. The literature estimating the direct economic benefits of science uses a 
range of approaches to assign dollar values to the innovations that derive directly from 
scientific research. For instance, Mansfield’s [1991] well-known study surveys R&D 
executives to determine the extent to which their new products and processes relied on 
scientific research. This work also measures the value of the new products and processes. 
Other studies track innovations through patents (Higgins, Thusby, and Thursby [2010]). 
Still others estimate the value of innovations arising from scientific research (e.g. 
Murphy and Topel [2006] estimate the total value of improvements in health with back-
of-the-envelope estimates of the benefits attributable to biomedical science). Regardless 
of method, the reported estimates are quite large, typically well in excess of the real 
interest rate or even returns on risky assets (e.g. common stocks). 

Second, science can have indirect benefits and policy discussions increasingly focus on 
these indirect benefits, such as the number of jobs “created” by research. Our focus is in 
this area, on the benefits that are generated by science beyond the technological 

1 A blue-ribbon panel convened by the Office of Science and Technology Policy to enhance university-
industry technology transfer concluded that, "University research is viewed by industry as ivory-tower with 
little thought to applicability... (Prager and Omenn [1980])." 
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innovations that arise from it directly. Existing work has emphasized a number of ways in 
which science can generate indirect benefits (Salter and Martin [2001] and Scott, Steyn, 
Geuna, Brusoni, and Steinmueller [2001] discuss mechanisms and survey the literature). 
For instance: (1) Researchers provide human capital for the economy. Often, cutting-edge 
science is best implemented by the scientists who conducted it. Consequently, 
researchers and their students often work for (or start) companies, increasing the 
absorption of science. Also, graduates from research institutions may be better equipped 
to perform in the knowledge economy. (2) Researchers may generate infrastructure, 
including equipment and facilities that support industrial innovation, or provide a hub for 
innovation (e.g. the research institutions in San Francisco may have attracted venture 
capital that then generated more innovation). 

Although job creation receives a lot of policy attention, we contend that job creation 
metrics may not be the best way to measure the indirect benefits from science for a wide 
range of conceptual and practical reasons. Rather, economic logic says that the indirect 
benefits from science should be measured in terms of the additional surplus to firms and 
workers accruing from increases in productivity. 

Many of the indirect benefits of science are believed to accrue locally, which makes them 
particularly important from the perspective of local policy makers. But, by summing the 
benefits received across locales, one can estimate national benefits. The localization of 
indirect benefits also means that their impact can be estimated by relating outcomes, such 
as wages, to measures of scientific activity across cities or states. Much of the existing 
literature takes this approach. As discussed below, three challenges must be address when 
using this approach: (1) unobserved differences across cities; (2) unobserved differences 
across workers; and (3) adjustment of factor inputs.  

The skepticism about the economic benefits of science can be addressed by more 
rigorous research, which addresses the empirical challenges directly and convincingly. 
Our survey of the literature discuss the extent to which different works address these 
concerns and points toward ways in which these challenges can be addressed. 

II. Job Creation as a Measure of Indirect Economic Benefits 

Policy makers frequently frame discussions of the economic benefits from science in 
terms of job creation. This section discusses problems with job creation metrics. We 
divide the problems into two broad categories: (1) underlying conceptual problems, the 
objections that rigorous contemporary economics would raise to job creation measures, 
and (2) practical problems that remain even if one is willing to look past the conceptual 
challenges. 

Underlying Conceptual Challenges 

Economists do not view the effects of policies on employment as fundamental, but rather 
view the effects on employment as being determined by the interplay of many factors. 
Specifically, economists think of science policy as affecting productivity. When 
productivity increases, firms look to hire workers. The economy is frequently, but 
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obviously not always, at or near “full employment,” only experiencing what is referred to 
as the “natural rate of unemployment.”2 If labor markets are near full employment and 
science policy increases productivity, potentially only a few jobs will be created because 
most people interested in working are already employed. Rather wages will be driven up 
as firms compete for workers. Thus, if the economy is at or near full employment, 
focusing on job creation will miss most or all of the impacts of science spending. Even if 
the economy is not at full employment (stimulus spending, for instance, occurs during 
periods when the economy is not at full employment), the effect of scientific activity on 
employment is likely to understate the full benefits of science.3 

Another limitation of job creation measures is that they ignore workers’ opportunity costs 
of time.4 Consider a science program that creates 1 job with $60K in annual 
compensation (roughly the average annual compensation in the United States in 2007). 
Even if the person who takes that job was unemployed, he or she does not derive $60K in 
net benefits from the job. This is because a worker’s net benefits from a job are the wage 
less the “opportunity costs” of his or her time - the value of that time in the next best 
activity. At full employment, compensation is likely to be close to opportunity costs, so 
the net benefits of increasing employment are small. Even when the economy is away 
from full employment, opportunity costs are not zero so that the worker’s compensation 
of $60K is likely to greatly overstate the net benefits of the job to the worker. 

Jobs also differ dramatically in terms of their compensation. It is natural to view the 
benefits of job creation as being greater if the jobs created have a high compensation 
level. Here too, standard economic theory takes a cautionary tone. Most high-paying 
“good jobs” go to “good workers.” A job paying $30K could have either larger or smaller 
net benefits than a job paying $120K because the person receiving the $30K job could 
have an opportunity cost of $25K while the person getting the $120K job could have an 
opportunity cost of $119K. And if science policy means that a $40K job is created in 
place of a $30K job, it is far from certain that the same person will be hired to fill it. 

Practical Challenges 

Even if one is willing to look past all of these conceptual challenges, there are a number 
of significant practical challenges to estimating job creation. The most obvious way of 
measuring job creation is to count up the number of new jobs at the organizations 
receiving funding or tally the specific jobs that were funded and attribute them to the 
funding. This calculation poses three difficulties. First, it assumes that the new jobs are 
due to the funding. By way of analogy to medical experiments, this procedure is 

2 Some unemployment is viewed as unavoidable due to frictions in the labor market as people entering the 
labor market after leaving school or childbearing search for jobs. There is also constant reallocation of jobs 
across sectors and regions, which generates unemployment.
3 The effect of a policy on job creation depends on the extent to which new workers choose to work as 
wages increase; the ways in which firms search for employees and workers search for jobs; and the extent 
to which firms hire workers versus invest in additional equipment.
4 On the other hand, income taxes mean that the social benefits to having additional people working are 
greater than the private benefits. 
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equivalent to counting up the number of patients who received a treatment and 
subsequently recovered. Surely some of the people who recovered would have done so 
even without the treatment. In the case of job creation, some of the new jobs might have 
been created even in the absence of funding. As in clinical medical trials, accurately 
estimating the number of jobs created requires a control group – a group of comparable 
organizations that did not receive the funding against which the funded treatment group’s 
outcomes can be benchmarked.5 

A second practical challenge arises because as new jobs are created, wages increase and 
some jobs that would otherwise have been created at other organizations are not created. 
In economic terminology, job creation from scientific activity can “crowd out” job 
creation elsewhere. 

The third practical challenge is that it is difficult to know which jobs should be traced 
back to the funding because jobs are frequently outsourced from one organization to 
another. It is likely that any effort to trace jobs created back to the initial funding will 
miss many jobs that were created by it and any effort to cast a wide enough net to catch 
most or all jobs created by the funding is likely to be so broad as to capture many jobs 
that were not created by the funding. It is worth bearing in mind, that these challenges 
apply to the evaluation of many programs, not just investments in science. 

III. Alternative Ways of Estimating Indirect Economic Benefits 

These challenges, both conceptual and practical, lead us to caution against job creation 
metrics. What then is the alternative? We argue that economic theory provides a simple 
metric for measuring the indirect benefits from science. Specifically, it argues that one 
should measure the effects of science on productivity. Gross Domestic Product in the 
United States is $14.6 trillion. If scientific activity were to increase productivity by 1% 
then its value would be $146 billion. Some of these benefits may take the form of newly 
created jobs. Others may take the form of higher compensation to workers. Others still 
may take the form of higher profits to the owners of the firm, which are also important 
(and are frequently overlooked in policy discussions). 

If science affect local economies indirectly, one would expect stronger economic 
outcomes in cities that have a high level of scientific activity compared to those that have 

5 An obvious approach is what economists refer to as a regression discontinuity design. Consider a policy 
where organizations apply for funding and the best applications are funded. One could compare the 
outcomes at the organizations that were only slightly above the funding threshold to those that were only 
slightly below it. (Jacob and Lefgren [Forthcoming] take this approach to estimating the impact of grant 
funding on research output.) There are at least two problems with this approach. First, it requires 
information on organizations that did not receive funding. These organizations may either be unwilling to 
provide information or not take the time to provide accurate, comprehensive information. Second, if the 
process by which the applications are vetted is good and society is investing optimally in science, the 
applications that were just barely funded should be only slightly better than the applications that were not 
funded, so the estimated benefits of funding should be small even though the benefits of many projects are 
much larger. 
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less scientific activity. We argue that the indirect local economic benefits from science 
can be estimated by relating economic outcomes, including wages and real estate prices 
(and even employment), to measures of scientific activity. The existing literature takes 
this approach relating a wide range of outcomes to scientific activity, innovation, and 
education levels. Outcomes include: income and employment (Beeson and Montgomery 
[1993]; Goldstein and Renault [2004]; and Saha [2008]); employment growth and hi-tech 
industry employment (Beeson and Montgomery [1993] and Saha [2008]); human capital 
formation (Abel and Deitz [2009]); the occupation mix (Abel and Deitz [2009]); and 
patenting (Carlino and Hunt [2009]). 

This approach has its own set of challenges. In what follows, we describe these 
challenges, describe the most commonly used data, and survey the existing literature, 
discussing the extent to which existing work addresses these challenges. We conclude by 
sketching an approach to address these challenges. 

Challenges 

The primary challenges to estimating the indirect local economic benefits from science 
using differences in economic outcomes across cities are: 

(1) Unobserved Differences across Cities (Causality) Economists think of cities 
differing in terms of amenities that make some of them more desirable places to 
live (e.g. good weather or access to mountains) or more productive for businesses 
(e.g. easy access to fertile land or shipping) than others. Many cities, like Boston 
and San Francisco, that have strong scientific institutions also have consumption 
amenities that appeal to workers. (Universities themselves may appeal to workers 
and/or foster attractive cultural amenities.) If so, workers will be attracted to these 
cities, which would tend to drive down wages in these cities, biasing down the 
estimated benefits of science. Alternatively, science producing organizations may 
flourish in cities that are more productive (e.g. because wealthier cities invest 
more in science), biasing estimates of the indirect benefits from science upward. 
Estimating the effects of science requires a strategy that addresses both potential 
biases. 

(2) Unobserved Differences across Workers (Selection) Cities with high levels of 
scientific activity may have highly-productive workers for two reasons. First, 
universities are major producers of science and also produce highly skilled 
workers (and the universities that produce the most research may produce the best 
workers). Second, cities with high levels of scientific activity may have amenities 
that are particularly appealing to highly skilled workers. If this sorting on ability 
is not addressed, estimates of the effects of science on wages will be biased 
upward. 

(3) Adjustment of Factor Inputs If research raises productivity in a city, it would 
be natural to expect workers to move to the area and for the city to expand. As 
workers move to the city, wages will be drive down, potentially biasing down the 
estimated wage benefits of science. 

5
 



 

 

 

 

Survey of Literature 

Measurement Issues 

Because a large portion of science is performed by academic institutions and because 
most academic R&D is in the sciences and engineering, researchers have often relied on 
academic R&D to measure science (Beeson and Montgomery [1993]; Goldsetin and 
Renault [2006]; Saha [2008]; Carlino and Hunt [2009]; and Abel and Deitz [2009]).  
Kantor and Whalley [2009] consider all university expenditure as an explanatory 
variable, which includes expenditure on scientific research. In some studies the share of 
bachelors degrees in science and engineering is used as a measure of science (Beeson and 
Montgomery [1993] and Saha [2008]). Goldstein and Renault [2004] consider the 
presence of non-academic research institutions and Carlino and Hunt [2009] include 
scientific activity from private and government laboratories in their analysis. They also 
use academic R&D by field and source in their study. Bauer, Schweitzer and Shane 
[2009] include patents to measure innovative activity. Data for scientific activity like 
academic R&D are frequently drawn from the National Science Foundation’s 
WebCASPAR https://webcaspar.nsf.gov/. 

Because cities differ considerably in population, most studies express science in per 
capita terms (and use outcomes that do not depend on population). When science is 
measured in per capita terms, “college towns” like College Station, TX and State 
College, PA, have the highest level of science (Saha [2008]). Note that smaller cities 
receive less weight in individual level or population-weighted metro level analyses. 

Addressing Unobserved Differences across Cities (Causality) 

One approach to addressing differences across cities is to include a wide range of 
controls for the observable characteristics of cities. Population is used most frequently, 
followed by crime rates, employment in different industries, the presence of an airport 
hub, taxes, utility expenses, and student-teacher ratios. It is important to bear in mind that 
controlling for city characteristics that are affected by science, misattributes the benefits 
of science to these characteristics (although it can be useful for unpacking the ways in 
which science generates indirect economic benefits). For example, some studies relate 
patenting to scientific activity and patenting tends to be related to better outcomes. If we 
believe that science increases patenting, then simply controlling for patenting 
misattributes some of the benefits of science to patenting. Although, controlling for 
patenting indicates how much of the effect of science operates through patenting. 
Researchers typically draw data on income and city characteristics from the decennial 
Census, the City and County Data Book, the State and Metro Area Data Book, County 
Business Patterns, or the Places Rated Almanac. 

Colleges and universities have both educational and scientific components, making it 
important to control for education in a region when estimating the indirect economic 
benefits from science. Measures of local educational levels include the share of the 
population with bachelors degrees (Saha [2009]; Bauer, Schweitzer and Shane [2009]; 
Carlino and Hunt [2009]; and Kantor and Whalley [2009]) or the flow of degrees 
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awarded per capita (Beeson and Montgomery [1993]; Saha [2008]; Abel and Deitz 
[2009]). The Higher Education General Information System (HEGIS) and its successor, 
the Integrated Postsecondary Education Data System (IPEDS) contain data on degrees 
and enrollments. These data are available through WebCASPAR. Educational attainment 
can be estimated from micro data such as the Census. 

Given the myriad factors that make one city more attractive than another, it is unlikely 
that all relevant factors can be controlled explicitly by researchers. A common strategy is 
to rely on panel data and use fixed effects estimates. This strategy looks at changes in 
scientific activity over time within cities. It sees whether the cities with the greatest 
increases in scientific activity also experience the largest improvements in outcomes.6 

For instance, if Washington, D.C. has good outcomes because it is the capitol and also 
has a high level of scientific activity, the fixed effects estimates eliminate the permanent 
effects of its being the capitol. Unfortunately, the fixed effects estimator is invalid if 
changes in scientific activity in a city over time are related to changes in either 
consumption or production amenities in that city. There is also a possibility of reverse 
causality, whereby changes in incomes or other outcomes affect scientific activity (e.g. 
through investments in science). 

In these cases, fixed effects estimates will not identify the effect of scientific research on 
local outcomes. Instrumental variables estimation is the most common solution. 
Formally, an instrument should be correlated with scientific activity but not directly 
related to the outcome variables. The most frequently used instruments in the literature 
are historical levels of scientific activity in the city (Saha [2008]; Bauer, Schweitzer and 
Shane [2009]; and Carlino and Hunt [2009]). Kantor and Whalley [2009] have a novel 
instrument. They use the market value of university endowments interacted with asset 
market returns. The idea is that the market value of the endowment affects the spending 
of a university but it does not directly affect local labor market outcomes. Carlino and 
Hunt [2009] uses a range of instruments, arguing that the presence of hills and highways 
in a city affects job densities and innovation but that they do not directly affect outcomes. 

Results 

Table 1 summarizes results from existing studies. Using cross-sectional data, Beeson and 
Montgomery [1993] find that university activities have no significant effect on income, 
employment rates, net migration rates, or the share of employment in high tech 
industries. The effects of universities on income are of a modest, but economically 
meaningful magnitude – a one standard deviation increase in the university variables 
increases predicted income by about 2%. In contrast, the economic effect on labor force 
composition is not trivial – a one standard deviation increase in R&D increases the 
employment of scientists by 25% and a one standard deviation increase in the share of 

6 It is important to note that the fixed effects estimates give the effects of changes in scientific activity on 
changes in outcomes. Such transitory variations in science may have larger or smaller effects on outcomes, 
so that fixed effects estimates should not be seen as giving the same effect as cross sectional estimates. 
Most studies also include time fixed effects to control for aggregate trends in scientific activity.  
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science and engineering degrees among all bachelors increases the predicted employment 
of scientists by 14%. 

Saha [2008] considers many of Beeson and Montgomery’s [1993] variables, but uses 
panel data for 1980, 1990, and 2000, allowing him to estimate fixed effects models in 
addition to cross-sectional models. He finds positive and significant effects of academic 
R&D and the share of science and engineering degrees among all bachelors in a city on 
income controlling for individual education, work experience, and the metro level stock 
of bachelors degrees. A one standard deviation increase in R&D increases income by 4% 
and a one standard deviation increase in all the university variables increased wages by 
12%. He finds more modest effects on employment status. 

In a study that covers a substantial amount of non-science university activity, Kantor and 
Whalley [2009] find small but statistically significant agglomeration spillovers caused by 
university spending. The estimates indicate that a 10% increase in higher education 
spending increases local non-education sector labor income by about 0.5%. This study is 
noteworthy because its instrumental variables strategy is unique (if not beyond question), 
expanding the foundation of our understanding of these issues. 

There is some evidence that the benefits of science are increasing over time. Goldstein 
and Renault [2004] find that the indirect economic benefits of universities became 
positive and significant after 1986. Consistent with this finding, Saha [2008] 
hypothesizes that wage effects in his work are larger than Beeson and Montgomery’s 
[1993] in part because the effects of science may be increasing over time. 

In estimating the benefits of science, it is important to control for education levels. Thus, 
Saha [2008] and Abel and Deitz [2009] both find that after controlling for the share of 
college graduates in the population, the estimated effect of academic R&D falls.  

Academic R&D does appear to affect the sectoral composition of local economies. Abel 
and Deitz [2009] show that academic R&D had a positive and significant effect on both 
the share of the population with bachelors degrees as well as on the occupation mix – 
mostly in the physical and life sciences occupations. Kantor and Whalley [2009] find that 
the spillovers are larger for firms that cite university patents more in their patents. These 
results are consistent with Beeson and Montgomery’s [1993] estimates for scientists (but 
not high technology employment).  

In the literature, patenting is used both as a determinant of outcomes and as an outcome 
in its own right. Treating patenting as an independent variable, Bauer, Schweitzer, and 
Shane [2009] find that patenting and human capital levels are important determinants of 
per capita income. Treating patenting as an outcome, Carlino and Hunt [2009] find 
academic R&D has positive and significant effects on innovative activity as measured by 
patents. Zucker, Darby, and Brewer [1998] find that the presence of star scientists is 
associated with more biotechnology startups. These results complement each other – 
science generates patents, which in turn raise income – providing a first step toward 
understanding the ways in which science affects outcomes. 
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Science may take time to affect economic outcomes. To account for this possible delayed 
effect, researchers have included lags of scientific activity in their analyses (Beeson and 
Montgomery [1993]; Saha [2008]; Carlino and Hunt [2009]; and Kantor and Whalley 
[2009]). Beeson and Montgomery [1993] and Saha [2008] find that the direction and 
statistical significance of the estimates remain unchanged when lags of science variables 
are introduced. Kantor and Whalley [2009] find little change in their main results when 
lagged science variables are introduced. The statistical significance of university 
expenditures was reduced when lags were used, but the direction and the significance of 
all other variables remained. Carlino and Hunt [2009] lagged all independent variables to 
minimize endogeneity. They also show that when lagged values of innovative activity are 
included as an independent variable, academic R&D continues to be positive and 
significant. 

If cities where incomes are higher produce more science (e.g. because they invest more in 
scientific institutions) including city fixed effects and using instrumental variables should 
reduce the magnitude of the estimates. Interestingly, most work (Saha [2008]; Bauer, 
Schweitzer, and Shane [2009]; and Kantor and Whalley [2009]) finds that fixed effects 
and/or instrumental variable estimators are larger than the OLS estimates. This finding 
suggests that scientific activity is highest in areas that are appealing places to live or 
where productivity would otherwise be lower (e.g. because universities are sited in out-
of-the-way places). It is also worth noting that none of the studies controls for 
unobserved differences in worker ability or controls for factor input adjustments 
satisfactorily. 

IV. Conclusions and Directions for Future Work 

Policy makers are increasingly interested in the indirect economic benefits from science. 
There are a number of papers that shed light on this issue. While the results from these 
studies are far from uniform, there is at least some evidence that scientific (and other 
innovative) activity in a city is associated with higher earnings and shifts in the industrial 
and occupation distribution toward technology and science. 

We have argued that strategies to estimate the indirect economic benefits from science by 
relating wages and other outcomes in a city to scientific activity rest on firmer scientific 
ground than efforts to measure job creation. At the same time, there are three significant 
challenges that must be address when taking this approach: (1) unobserved differences 
across cities (causality); (2) unobserved differences across workers (selection); and (3) 
adjustment of factor inputs. 

The first of these issues has begun to be addressed in the literature. The second two have 
received considerably less attention, making them important directions for future 
research. 

It is possible to employ longitudinal data on individuals to address unobserved 
differences in worker ability (challenge 2). Specifically, one might estimate how 
increases in scientific activity in a city affect the people born or living in the city at a 
point in time. If all the estimated benefits of science are due to selection of workers into 
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cities, one would expect that fluctuations in scientific activity in a city would not affect 
the people born in a city. By contrast, if fluctuations in scientific activity are strongly 
correlated with outcomes for the people born in a city, it would suggest that the estimated 
benefits are not driven by selection. (Moretti [2004a] takes a similar approach to 
estimating human capital spillovers in cities.) 

To address factor input adjustments (challenge 3), our work in progress develops a model 
of the determination of wages and rents in cities. We show that if wages in a city increase 
and rental rates on real estate do not decrease or rental rates on real estate in a city 
increase and wages do not decrease, then productivity must have increased in the city. 
Thus, it is possible to estimate the local productivity benefits. 

Additional and better data will be valuable for quantifying the indirect benefits of science 
and unpacking the ways in which those benefits arise. Valuable data include: (1) data 
linking patents to the scientific publications that they build upon; (2) data linking 
researchers and students from their universities and laboratories to the companies they 
start or work for or with, including through consulting arrangements; and (3) data tracing 
technologies from Universities to industry through licensing agreements. 
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Table 1. Summary of Studies. 
Authors, Year, Outlet Data Results 	 Controls for Controls for Controls for 

Unobserved Unobserved Factor Input 
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Patricia Beeson and Wages: Census 
Edward Montgomery Employment: National Planning Association 
1993 Academic R&D: NSF 
Review of Economics Bachelors degrees, Science Degrees: HEGIS
and Statistics  

City characteristics: State and Metropolitan 
Area Data Book   

Moderate but insignificant effects on 
wages. 
Effects on high tech employment and 
employment growth. 
Analysis at metro level. 

Controls for 
observable city 
chars. 

Controls for No 
observable 
worker chars. 

Subhra Saha 

Ph.D. Dissertation 
Ohio State University 

Wages: Census 
Academic R&D: NSF 
Bachelors Degrees, Science Degrees: 
HEGIS/IPEDS 
City characteristics: State and Metropolitan 
Area Data Book 
IVs: Historic Data for R&D, Degrees 

Large and significant effect of 
academic R&D on wages; smaller 
effects on employment. 
Science and engineering degrees 
increase income and employment 
rates. 
Analysis at metro level. 

Yes (controls Controls for No 

for observable observable 

city chars.; worker chars.
 
Fixed Effects;
 
IV) 


Shawn Kantor and Average Income: County Business Patterns  Small but significant effect of Yes (Fixed No No 
Alexander Whalley university spending on average Effects, IV)University expenditures: HEGIS/IPEDS 

income. 2009 City characteristics: City and County Data 
Largest effects in industries such as NBER Working Paper Book 
pharmaceuticals and electronics. #15299 IV: Endowments – HEGIS/IPEDS and S&P 
Analysis at county level. stock market index 
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Table 1. Summary of Studies (continued). 
Authors, Year, Outlet Data Results Controls for Controls for Controls for 

Unobserved Unobserved Factor Input 
Difference Differences Adjustments 
in Cities in Workers 
(Causality) (Selection) 

Gerald Carlino and 
Robert Hunt 
2009 
Federal Reserve Bank 
of Philadelphia 

Patent intensity: OECD/EPO Patent Citations 
Data 
Job density: Country Business Patterns 
Academic R&D: NSF 
Private Sector R&D: Directory of American 
Research and Technology 
Congressional earmarks of agency funds for 
academic R&D: Chronicle of Higher 
Education 

Educated workforce has a 
significant and positive effect on 
innovative activity. 
R&D in private and government 
labs and academia have modest 
effects on patenting. 
Statistically insignificant effect for 
the applied portion of federal R&D. 
Analysis at metro level. 

Yes (Fixed 
Effects, IV) 

No No 

Other Metro Controls: County Business 
Patterns 
IV: Lagged college graduate population 
share; employment densities; topography 

Jaison R. Abel and 
Richard Deitz 
2009 
NY Federal Reserve, 
Staff Report #401  

College Graduate Employment Share: 
Census 
Academic R&D: NSF 
Bachelors Degree, HEGIS/IPEDS 

Academic R&D has a large and 
significant effect on both the stock 
of human capital as well as on the 
occupation mix. 
The flow of degrees has a very 
small impact on the stock of 
degrees. 

Yes (Fixed 
Effects) 

No No 

Analysis at metro level. 
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2004 

2009 

1998 

Table 1. Summary of Studies (continued). 
Authors, Year, Outlet Data Results 	 Controls for Controls for Controls for 

Unobserved Unobserved Factor Input 
Difference Differences Adjustments 
in Cities in Workers 
(Causality) (Selection) 

Harvey Goldstein and Academic R&D: NSF Small effect of university presence Yes (Quasi No No 
Katherine Renault before 1986, then somewhat larger Experimental Metro Variables: 1990 Census 

effects. 	 Structure) 
Analysis at metro level. Regional Studies 

Paul Bauer, Mark Personal income: Bureau of Economic 
Schweitzer, and Scott Analysis 
Shane Population: Census  

High school and college attainment rates: 
Cleveland, Federal Current Population Survey for 1979-2004 
Reserve Working Paper and census tabulations before that 

Patent data: Annual Report of the 
Commissioner of Patents and USPTO 

The authors find positive and Yes (Fixed No No 

significant results of the knowledge Effects and 

stock variables on per capita income IV) 

of states. 

State level analysis. 


Lynne Zucker, Michael Biotech startups: the North Carolina Presence of star biotechnology Includes No No 
Darby and Marilynn Biotechnology Center and Bioscan scientists associated with more controls and 
Brewer biotechnology startups. lags. Star scientists: GenBank and other sources 

Analysis at metro level. 
American Economic 
Review 
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