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In many respects, microelectronics is the most visible technology area in which
sustained, decades of Federal investments in science and technology have had clearly
significant impacts on the U.S. economy. Government investments in this area, historically,
were influential in the early technological development of the industry (Tilton, 1971; Levin,
1982; Flamm, 1985, 1996), seem also to have played a significant role in the revitalization and
restructuring of the U.S. semiconductor industry in the 1990s (Macher, Mowery, and Hodges,
1998; Browning and Shetler, 2000; Flamm and Wang, 2003; Carayannis and Alexander, 2004),
and have continued to influence the trajectory of technological innovation in specific areas
where government and industry interests intersect.

Why Do We Care About Semiconductors?

An important recent economics literature (Oliner and Sichel, 2000; Jorgenson, 2001;
Jorgenson, Ho, and Stiroh, 2005) has credited the marked acceleration of U.S. productivity
growth in the U.S. in the late 1990s to the impacts of information technology investments on
the economy, which in turn are credited in large part to technological advances in
microelectronics, upstream. This literature utilizes data on quality-adjusted price declines for
semiconductors, and downstream, semiconductor-using information technology (computers,
communications equipment), and traces through their impacts on output and productivity in
the larger U.S. economy using a standard economic growth accounting framework." The
research implicitly interprets the extraordinary declines in quality-adjusted price measured in
semiconductors and IT as primarily reflecting technological change, without actually identifying
the specific innovations that led to these price declines in microelectronics and IT. Therefore, at
some very high level, these studies measure economic benefits of technological innovation in
microelectronics, without actually identifying any specific innovations responsible for these
benefits.

These growth accounting studies do not measure what economists typically use as a measure of social benefit resulting from an

investment that ultimately lowers prices to final consumers, consumer's surplus (the excess of cumulative consumer willingness to pay over
price charged for what is consumed). In a competitive industry, where prices are ultimately competed down toward average costs in the long
run, one would expect the bulk of the social return from investment in technical innovation to show up as consumer's surplus. A study that
attempts to measure the consumer's surplus created by declining semiconductor prices is Flamm (1997), which compares semiconductor price
declines to the impact of 19" century railroad transport cost declines, and concludes (p. 32) that “the microelectronics revolution has had from
two to four times the relative impact on the U.S. economy that the railroad had over comparable time periods.”

Analzying welfare gains downstream from semiconductors, Greenwood and Kopecky (2010) estimate that the development and
improvements to the personal computer increased consumer welfare by between 2 and 14 percent of total personal consumption expenditure.

There has been some argument that these studies overstate the contribution of information technology to the U.S. productivity
growth resurgence. For example, Feenstra, Reinsdorf, and Slaughter, 2008, argue that about 20% of the increase in productivity actually flowed
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Taking the next step, and directly connecting technical advances in microelectronics to
the extraordinary price declines seen in downstream information technology (which in turn
drive the productivity growth analyzed in these studies) is difficult but not impossible. Using a
microeconomic cost theory framework, Aizcorbe, Flamm, and Khurshid (2007), for example,
estimate that 40 to 60 percent of the decline in quality-adjusted price for personal computers
in 1998 was due to declines in price for the semiconductors contained within these computers.

But the existing literature is relatively silent on what is causing the breathtaking price
declines in semiconductors. Since the prices of labor and material inputs going into
semiconductors are not declining at rates remotely close to those being measured in
semiconductors, it has been uncontroversial to assert that the price declines are primarily and
overwhelmingly the result of rapid and continuing technical innovation in the design and
manufacture of semiconductors. In this sector, at least, a quality-adjusted price index also
functions as an index of technological innovation.

Stylized Facts About Innovation in Semiconductors

Record-breaking rates of technological innovation. Over the last two decades, a
substantial body of economic research has shown that semiconductor prices have been
declining at truly extraordinary rates. (Dulberger, 1993; Flamm, 1993; Grimm, 1995; Flamm,
1997; Aizcorbe, 2002; Aizcorbe, Corrado, and Doms, 2003; Aizcorbe, Oliner, and Sichel, 2006;
Flamm, 2007). The basic facts are these: from the mid-1970s to the mid 1990s, an aggregate
price index for semiconductors declines at a rate of about 20 percent annually. In the late
1990s, there was a dramatic acceleration in rates of decline in semiconductor prices, and the
aggregate rate of price decline hit almost 30 percent annually, averaged across all products.
Leading edge semiconductors (memory and microprocessors) had rates of price decline that
were 50 to 100 percent greater than the weighted averages for all products.

from mismeasured declines in prices of imported goods, and tariff reductions. Those familiar with data for these sectors understand the
generally poor quality of government-collected statistics on computer, communications equipment, and semiconductor manufacturing, sales,
and trade. Indeed, recent efforts by government statistical agencies to improve their price indexes for these products have often relied on data
collected by private consulting firms, rather than official government surveys. On the other hand, the same message-- of IT investment leading
to significant productivity improvements—has been replicated in careful industry-level studies (e.g., Bartel, Ichniowski, and Shaw, 2007;
Casolaro and Gobbi, 2007; Motohashi, 2007), as well as in studies of other economies outside of the U.S. (Eicher and Rohn, 2007; Jorgenson and
Vu, 2007; van Ark, O'Mahony, and Timmer, 2008; Inklaar, Timmer, and Van Ark, 2008). Thus, putting aside continuing concerns about high tech
sector data quality, the linkage between IT investment and productivity growth seems well established.
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These rates of price decline are off the charts. Even in computers, often the poster child
for sustained technological innovation, measured price declines have typically been at the low
end of this range (i.e., 20-30 percent annual declines).

Substantial variation over time in rates of innovation. From the mid-1970s to the mid-
1990s, the two leading edge products accounting for the biggest chunk of the semiconductor
market (both were invented in the early 1970s)-- memory chips (specifically, dynamic random
access memory, DRAM), and microprocessors-- saw prices fall at a much faster rates, exceeding
28% annually for DRAM, near 30% annual declines for microprocessors (Flamm, 1997; Aizcorbe,
Oliner, and Sichel, 2006). Beginning in the mid-1990s, DRAM prices begin to fall at a rate
approaching 48% annually, while rates of price decline in microprocessors exceed 60% annually.
(Aizcorbe, Oliner, and Sichel, 2006; Flamm, 2007). Most recently, rates of decline have
slackened somewhat, and seem closer to historical averages prior to the mid-1990s surge. (See
Table 1.)

Links between policy, organizational, and institutional changes and innovative behavior.
Responding in large measure to the perceived success of Japan’s government-subsidized
cooperative industrial research projects of the late 1970s (particularly the so-called “VLSI
projects”, credited with stimulating innovation in the Japanese semiconductor industry (Flamm,
1996)), the U.S. Congress passed the National Cooperative Research and Production Act in
1984, and created limited relief from antitrust sanctions for research and development joint
ventures registering with the U.S. government. (Link and Bauer, 1987) Over the years, electrical,
computer, and electronics companies have been the industrial sector making the most frequent
use of these provisions—accounting for at least 17% of such registrations over 1985-94, and
almost 30% of the registrations over 1994-2003. (Link, 1996, p. 621; National Science Board,
2006, appendix table 4-36) Perhaps the highest profile such R&D joint venture was the U.S.
semiconductor industry’s SEMATECH research joint venture, started up over 1987-88.

A second example of changes in semiconductor industry innovation behavior stimulated
by institutional and policy factors was the visible increase in patents filed by semiconductor
producers after the creation of a “pro-patent” Central Appellate Court for the Federal Circuit
(CAFC) in 1982. In an industry which previously been among the least reliant on patents to
protect technological advantages, there was an upsurge in patents relative to R&D expenditure
after the 1980s (Hall and Ziedonis, 2001). Interestingly, this strengthening of patents seems to

* Flamm (1997).
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have led primarily to a rise in the probability of semiconductor firms being the target of patent
lawsuits filed by parties outside the industry, not in litigation amongst semiconductor firms—a
mutual détente within the industry seems to have been the outcome of this patent “arms race”
(Hall and Ziedonis, 2007).

A final, and particularly important example of how innovation outcomes can be
associated with institutional and organizational changes, is connected to the creation of the
International Technology Roadmap for Semiconductor (ITRS). In the mid-1990s, US
semiconductor R&D consortium SEMATECH adopted a strategic plan intended to accelerate the
introduction of new generations of semiconductor manufacturing technology. SEMATECH’s
intention was to reduce this time from 3 years to 2 years. In the late 1990s, this U.S. national
roadmap evolved into a global roadmapping effort (the International Technology Roadmap for
Semiconductors, ITRS), involving the semiconductor industries of the US, Japan, Europe, Korea,
and Taiwan (Flamm, 2009). Whether this closer coordination among specialized suppliers of
equipment and materials, and their users in the semiconductor industry, brokered through the
ITRS, is entirely responsible for accelerated innovation in the industry may be debated, but one
thing that is clear is that the industry did collectively shift to a new innovation cycle, reducing it
to two years between new technology generations, or “technology nodes”, for the last 15
years. (See Figure 2)

The creation of the International Technology Roadmap for Semiconductors (ITRS) was a
unique event-- in no other global high technology industry do all major equipment and
materials producers, and their semiconductor-producing customers, worldwide, invest
significant resources in coordinating investments setting the direction and pace for introduction
of new manufacturing technologies. Also, since the 1990s, there has been a surge in new
semiconductor R&D consortia activity. Some have been purely private enterprises (IBM’s
“common platform” semiconductor manufacturing technology consortia comes to mind) while
others have also benefitted from government subsidies (IMEC, in Flanders).*

The substantial variation over time in the rate of innovation, plus the apparent
correlation of institutional and organizational arrangements with innovation rates, mean that
there is some hope of disentangling the factors accounting for changes in the pace of

*IBM’s “common platform” partners are currently Samsung and Globalfoundries; previously they also included
Sony, Infineon, Chartered, and Toshiba. See Flamm(2009). Sony, Infineon have since greatly reduced the scope of
their semiconductor manufacturing activities, while Chartered was acquired by Globalfoundries.
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innovation over time. Studies of innovation in semiconductors are of interest because of the
intrinsic economic importance of this industry, and because the methods used and lessons
learned may be applicable to other sectors.

Inside the Black Box: Structural Models of Technological Innovation in Semiconductors

One can argue there are two basic empirical approaches to modeling the impact of
technology investments on technological innovation. One approach views technology as a
“black box”—innovation inputs, like R&D expenditure, or R&D effort by scientists and
engineers, go into one end of the box, and innovative outputs pop out the other end, after
unknown time Iags.5 “Black box” studies use statistical methods to tease out how variation in
amounts of inputs, or different types of innovative inputs, affects measures of innovative
output, in order to calculate a variety of effects of interest: the average private or social
economic return from stuffing an additional input—engineers or funding—into the input
hopper, and the range of variation in average economic returns across different types of inputs,
industries, and characteristics of the “black boxes” (types of research performers,
organizational structures, input quality). The most sophisticated such studies worry about the
endogeneity of innovative inputs, that is, that observed inputs are likely to be influenced by
realized returns, or be correlated with other unmeasured determinants of economic return.
There are also many problems with measuring both inputs and outputs to innovation in these
studies, and even the modest sample sizes needed for minimal statistical precision typically
require pooling many heterogeneous entities with relatively few controls for heterogeneity.®

> The unknown time lags are a serious issue, because annual variation in R&D expenditures (or staffing) within
organizations over time is relatively small. The high degree of collinearity between any year’s R&D and previous
year’s R&D spending is the reason researchers often instead construct a “knowledge capital” stock variable, which
effectively allows them to simply add up lagged R&D expenditures (reduced by an assumed depreciation rate) into
a single aggregated R&D measure.

¢ Measuring both inputs and outputs is difficult, but metrics for innovative output are particularly hard to define.
Counts of patents and publications are often used, but patents and publications don’t directly measure innovation,
or the economic value of an innovation, and in many cases may even best be viewed as an input to, and not an
output from, what ultimately ends up as an economically valuable industrial innovation. Further, it is known that
most patents (and publications) are worthless economically, and the role of patenting and publishing as
complements to the development of economically valuable innovations is highly variable across industries.
Citation-weighted patents and publications are often used to define a more meaningful metric of important
patents and publications, but these still are complements to new industrial technology, and do not directly
measure or define either an important innovation or its economic value.
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The alternative approach might be called a “structural” model of innovation. The top is
peeled off the black box in this approach, and a model of how technical parameters, derived
from engineering, technical, or scientific analysis, affect economically meaningful outcomes
(costs, product characteristics) is provided. An economic description of suppliers, and market
demand, is also specified. Technological innovation can then be defined as the process leading
to alteration of technical parameters embedded in the model, and the social returns to
innovation calculated by comparing benefits to both consumers and producers, with the value
of all investments, both private and public, in altering the technical parameters. (Figure 1)

The advantage of a structural model over the black box approach is that it allows the
economic impact of a single technical innovation to be predicted. Statistical methods may be
used to characterize demand and supply within an industry, but these are ultimately combined
with a technological model that interacts these economic descriptions with technical
parameters. The economic impact of the innovation is calculated by simulating the impact on
model outcomes of altered technical parameters. The disadvantage of a techno-economic
structural model is that it may require a considerable investment by the researcher in peeling
back the black box within a specific product and industry, in order to integrate a parameterized
technical description based on scientific literature, of the product and production process, with
economic descriptions of supply and demand.

Interestingly, seminal empirical economic studies of the value of technological
innovation (Griliches (1958), and Mansfield (1977)) were arguably structural models, identifying
and tracing through the impacts of specific innovations on cost or product characteristics, and
measuring benefits to producers and consumers from a technical change by solving the model.
The “black box” approach, which probably accounts for more of the current literature on
economic effects of innovation, came later.’

Semiconductor technology innovation lends itself very naturally to a structural modeling
approach. The ITRS roadmap can be viewed—and utilized—as the core of a technical
parameterization of semiconductor manufacturing technology directly related to economic
concepts. Semiconductor technologists conceptualize technological change in their industry as
being characterized by new generations of manufacturing processes--"technology nodes”. Each
new generation of manufacturing equipment (at the new technology node) is described by the

” It might be argued that this was a form of “endogenous” technical change, driven by ever cheaper statistical
computing power and the growing number of large, computerized historical data sets available to researchers.
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minimum width of the smallest feature that can accurately be created on an electronic device
engraved on a silicon wafer (e.g.,” the 90 nm technology node”). Historically, the advent of a
new generation of semiconductor processing equipment has been characterized by the
capability to manufacture electronic devices with minimum feature widths that are 30 percent
smaller than the minimum width of a feature created using the previous generation of
processing equipment.8

We can think of the elapsed time between each generation of new (30% reduction in
critical feature size, F) technology node as characterizing an underlying “rate of innovation” in
semiconductor manufacturing technology. If we crunch the numbers using the assumption
that-- as was historically the case from the mid-1970s to the mid 1990s-- that a new technology
node (a 30% reduction in F) was introduced every 3 years, while processing cost per area of
silicon remained roughly constant, the net result would a 21 percent annual decline in
manufacturing costs for some given assemblage of electronic components on a chip. (Flamm,
2003, 2004). This almost exactly matches the historical rate of decline for an aggregate price
index for semiconductors (though significantly below the rate of price decline for the highest
tech leading edge products, DRAMs and microprocessors)! Conversely, if these stylized facts are
correct, the fact that quality-adjusted DRAMs and microprocessors were declining at a roughly
50 percent faster rate during the pre-1995 decades must be due to something other than
changes in manufacturing costs due to the adoption of new technology nodes.

Figure 2 showed that beginning in the mid-1990s, new technology nodes began to be
introduced at a faster pace in the industry-- every 2 years, rather than every three years.
Crunching these numbers, while continuing to assume that costs per area of processed silicon
remain roughly constant over a decade or more, would lead us to predict that the decline in
manufacturing cost per electronic component would ratchet up from 21 percent annually, to 29
percent annually. Again, this is close to the observed decline rate for an aggregate price index
for all semiconductors in the late 1990s. Thus, an increase in the rate of technological
innovation in semiconductor manufacturing in the late 1990s explains much, but not all, of the
observed acceleration in rates of price decline for semiconductors.’

8 Since the area of a rectangular electronic device created with these minimum feature sizes would be
approximately halved (since .7 x .7 equals .49 of the area previously required) when this new equipment arrived,
the net effect would be a halving of the silicon area needed per manufactured electronic device.

% See Flamm 2003, 2004; Aizcorbe, Oliner, and Sichel, 2006.
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If all the industry was doing was shrinking device sizes on a planar surface, then the
manufacturing cost story we just told would be the complete story. But, in fact, the
semiconductor industry was also incorporating other types of innovations into the design of its
products. In memory chips, for example, design innovations adopted in the late 1980s enabled
manufacturers to replace flat, planar storage capacitors with three-dimensional "stacked" or
"trench" capacitors, allowing arrays of memory cells (the electronic circuitry capable of storing
a binary "bit" of data) to occupy a smaller footprint on a silicon wafer manufactured at any
given critical feature size, F. The 1990s were a period in which rapid progress was made in new
circuit designs for memory cells, which shrank the areal footprint for a memory cell from a
multiple of 16 to 22 times F?in 1995, to 10 times F2 in 1998. Reducing the required area for
electronic components by 50 percent over three years, with constant processing costs per area,
is equivalent to about a 21 percent annual decline in manufacturing cost per device. Thus, by
adding this effect to the impact of the acceleration in the introduction of new technology
nodes, we have pretty much accounted for most of the increase in the rate of decline in DRAM
prices in the late 1990s.'°

The even larger "excess" price decline for microprocessors in the late 1990s (when
quality-adjusted prices were declining at even faster 60%+ annual rates) requires more detailed
explanation. | have elsewhere argued that these declines reflect the rapid introduction of a
large existing stock of computer architectural and design features into microprocessor designs
in the late 1990s.™* A subsequent reduction in the rate of price decline for microprocessors, in
this interpretation, is related to the rapid incorporation and exhaustion of the stock of "low
hanging fruit" computer architectural innovations developed over 30 years of mainframe and
supercomputer architectural development, that could be easily and quickly adapted for use in
microprocessors in the late 1990s."

The point of this simplified description of technological innovation in semiconductor
manufacturing is that the impacts of particular innovations, or sets of complementary
innovations, can be connected directly to effects on circuit element cost. Using this framework,

1% The story is actually somewhat more complicated, because the memory cell area of a DRAM typically accounts
for only half of the area of a DRAM chip. The remainder of the DRAM chip is peripheral circuitry. See Flamm, 2010,
for a fuller discussion.

1 Flamm, 2007, sketches out the details of this analysis.

2 A very interesting study by Pillai, 2007, comes to the same conclusion based on different evidence.
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we can (a) construct an analytical framework that accounts systematically for the significant
historical variation over time in rates of decline for quality-adjusted semiconductor prices
visible in Table (1), in terms of the adoption or diffusion of specific technical innovations, (b)
evaluate the potential economic effects of specific technological goals using an explicit
analytical framework, and (c) potentially, use these evaluations to assist in evaluating real world
technology investment decisions.

A “micro-microeconomics” of technological innovation, then, seems feasible. We could,
for example, compare the economic impact of a research project that accelerates the adoption
of a new manufacturing technology node by a year, with the gain from a proposed new circuit
structure that promised to shrink device size by 50%, and ask which potentially has the greater
economic return. While the above describes semiconductor manufacturing, structural models
of the impact of specific technical innovations on solar electric energy production costs, or
vaccine manufacturing, etc., are likely to be just as useful and relevant.

Connecting the Dots

Clearly, a detailed exploration of the interaction between technological developments
and industrial economics can yield significant insights into the specific, detailed determinants of
the pace of technological progress in an economically important high tech sector, and offer a
framework for evaluating the potential economic payoff from funding technology projects that
propose specific technical goals. More detailed research into “connecting the dots” between
specific technology investments, and specific economic benefits, might also produce useful
insights into what types of technical, institutional, and organizational characteristics of research
projects yielded the highest probabilities of producing large economic benefits. Both types of
studies could be of substantial interest to Federal S&T agencies as they consider how to allocate
scarce funding resources.

Recent studies have taken a variety of approaches to tracing through the links between
specific technological innovations in microelectronics, and economic benefits produced by
these innovations. The first of these approaches, using survey-based cost-benefit analysis of
technology investment projects, superficially resembles a structural model of technical
innovation, insofar as benefits from a technology investment are calculated, then compared to
estimates of the costs of those investments. However, rather than relying on an explicit model
of product demand, and a supply and cost structure that is explicitly linked to technical
parameters that are altered, and a new equilibrium outcome computed (as in Griliches (1958)
or Mansfield (1977)), producer responses on surveys or questionnaires are used as the basis for
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estimates of benefits from the technical change. By definition, then, an important component
of social return in high tech (consumer surplus created by lower product prices resulting from
technical change) is omitted, and these studies can at best only estimate private returns.

Some of this literature has focused explicitly on the semiconductor industry. Link, Teece,
and Finan (1996), for example, estimate the returns to an early sample of R&D projects
undertaken by SEMATECH, by surveying SEMATECH member companies on the economic
benefits received from these projects. Combining these estimated benefits with project costs
supplied by SEMATECH administrators, they calculated internal rates of return. While their
specific empirical results are of limited interest,™ their methodology illustrates a number of
common pitfalls in using cost-benefit analysis for technology program evaluation.

It is useful to briefly consider the goals and purposes of a study like this. The intent,
clearly, is to ask questions like: Was the portfolio of projects undertaken by SEMATECH, overall,
a worthwhile investment from the view point of its members? From the social perspective,
taking into account the costs of SEMATECH’s government subsidy, did it provide a good return?
Would the investment have been undertaken absent the government subsidy?

Simply measuring the retrospective return on any single project would be uninteresting,
since a low or even negative return on any single project would be an expected outcome even if
the program as a whole were highly successful, if it were funding long-range, risky projects with
substantial risk. Similarly, a very high rate of return on a clearly successful project is equally
unenlightening.’* What would be more useful is a forward-looking modeling framework that
successfully measures the historical economic impact of selected technical innovations, and
thus validated, could then be used to measure the potential payoffs to new innovations, for
comparison with their potential costs.

Furthermore, even a completely unsuccessful R&D project, that created no positive
stream of returns, and so had a net negative return when analyzed as a standalone project,
might actually have a positive return if viewed in a broader context. The information gleaned

 Note that this study was undertaken early in the history of SEMATECH, and looked at projects started during a
tumultuous period of substantial internal debate about the kinds of projects SEMATECH should be undertaking. A
new CEO took over in 1991, and in 1993 reorganized much of its agenda around support for the goal of shortening
the period between technology nodes from 3 to 2 years.

% As Griliches (back in 1958, p. 426) put it, “Does it really make sense to calculate the rate of return on a successful
‘oil well’?”
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from a failure could stimulate others to avoid making investments that would not succeed, or
guide resources into other technology projects in technology areas with a higher probability of
success. It is even possible that an entire commercially unsuccessful program of multiple
technology project investments might have a net negative return when considered in isolation,
but that information about what doesn’t work might have substantial positive value in guiding
further R&D investments by organizations with access to this information. Indeed, the “loser”
technology program might even yield a net positive return when these other avoided R&D
failures are taken into account. These kinds of informational spillovers are famously difficult to
detect or measure, and for this reason we are entitled to be a little skeptical about the utility of
retrospective modeling of economic returns, when used for research program evaluation.
Should a negative commercial return on a recently ended nuclear fusion program convince us
that we would have been better off simply not doing it? Will a failure not help us better design
the next technology investment in the fusion energy area?

Another difficulty frequently found in this type of study that is that the basis for
estimating benefits from projects was a survey instrument asking companies for an estimate of
the monetary value of benefits received.™ Since company accounting systems are not be set up
to model “what-if” questions, such evaluations implicitly involve the survey respondent
somehow doing their own model of the impact of the technology on prices and costs faced by
the firm, and comparing an actual outcome with the hypothetical scenario of no new
technology available. Such survey responses may not make it clear whether those sampled
actually are sharing the same common assumptions about the effect of not using the new
technology on key technical parameters, or the extent to which those effects are felt
throughout the industry, or implicit assumptions about effects on market demands and
competitor’s supplies. The respondent’s (mental?) modeling process, unfortunately, is not
explicit, so it is unclear to what extent the response relies on, say, higher costs felt across the
industry being passed on to consumers in the form of higher prices, or, alternatively, simply
absorbed by the company in diminished profit margins, or felt in both higher prices and lower
operating margins.

Another strand in the use of cost-benefit analysis to model the economic effects of
technological innovation is associated with the National Institute of Standards and Technology

n the Link, Teece, and Finan study, company representatives were asked their opinions “about the economic
state of the company in the absence of the research project. Benefit data were derived by comparing these
responses to the current economic state of the company” (p. 742 ).
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(NIST), which has a long record of sponsoring external cost-benefit studies of both intramural
R&D projects (funded by external budgets, or by NIST’s own budget), and extramural R&D
projects administered by NIST (like NIST’s Advanced Technology Program (ATP)).*® These
studies have played an important role in stimulating recent interest in this area, by collecting
substantial data on firms and technologies involved in these programs, and enlisting outside
consultants and academic economists in an effort to analyze the impacts of its programs on
innovation, and resulting economic benefits. However, the varied approaches taken by the
authors of these studies, using different assumptions and methodologies, make it difficult to
arrive at any robust conclusion about what these studies show, exactly, aside from producing
generally high internal rates of return and benefit-cost ratios.”’” Table 2 shows a summary list of
such NIST-sponsored evaluation studies related to semiconductor technology.

While the methodological variety in the NIST ATP evaluation studies does not facilitate
cross-study comparisons of results, it did serve to stimulate useful and interesting work on
measuring knowledge spillovers, one of the most difficult and thorny issues for research on
economic benefits from innovation. Studies by Fogarty, Sinha, and Jaffe (2006), and Watkins
and Schile (2006) are notable for their focus on challenges to measurement of benefits posed
by spillovers, and their studies of how they might be directly measured. In addition, the NSF’s
SciSIP research program is currently funding two projects which address the issue of diffusion of
innovations, and spillovers, in the semiconductor industry.18

A second approach might be described as structural models applied to case studies,
where a researcher uses technical and engineering data to build an economic simulation model
of production cost with and without the use of a specific innovation. Adding to that the
relationship between cost and price, and demand, then allows the private (benefits
appropriated by the innovating firms) or social (taking into account benefits to users or
consumers not captured by the innovators) returns to be estimated.

'® For useful surveys of some of the issues faced in these studies, see Tassey (2003), Powell (2006).

7 As Tassey (2003) notes, if we take 50% as a ‘hurdle rate’ for social return based on studies of private sector social
returns by Mansfield, et al (1977), Tewksbury et al,(1980), and Griliches (1988, 1995), we would conclude that
returns on these projects generally exceed that hurdle rate.

¥ Those two projects are Flamm, "Modeling Innovation Chains Using Case-Based Econometrics: Nano-electronics
and Biotechnology Applications," NSF Award 830389, and Klepper, “Clusters, Heritage and the Microfoundations of
Spillovers - Lessons from Semi-Conductors,” NSF Award 965451.
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One recent example of a systematic approach to measuring benefits (in this case, cost
savings to semiconductor producers) and costs from a technical innovation in semiconductors is
NIST's commissioned study on the costs and benefits from investments in measurement
technology in the semiconductor industry (NIST, 2007). In this study, interviews are not used
to elicit estimated benefits, but rather to solicit estimates of technical parameters related to
cost savings, which are then utilized in a modeling framework to arrive at benefits estimates.
Another is Watkins and Schlie (2006), which estimates benefits to both producers and
consumers created by NIST investments in semiconductor-based photonic technology in a
specific firm, as well as identifying indirect spillovers to other firms. Pillai (2007) analyzes
empirical data tracking technological change in semiconductor lithography, and links it to
observed rates of quality-adjusted price change in microprocessors. Flamm (2010) estimates
the private value of a hypothetical one year acceleration in the adoption of a 6F> memory cell
design in DRAMs to be about 16% of annual sales of DRAMs for DRAM producer Samsung in
2005 using a techno-economic simulation model. These studies are all most useful in that they
contribute to understanding the channels through which economic impacts of the innovation
are felt, by to some extent lifting the cover off the black box.

A third approach takes more disaggregated patent, bibliometric, or R&D funding data
than is usually available, and estimates a “black box” model of the impact of these more highly
disaggregated innovative inputs on output, or market value, or firm profits. Early examples are
the Megna and Klock (1993) and Shane and Klock (1997) studies of the impact of R&D and
patent counts on semiconductor firm market value. Another example of this approach is Deng
(2006), studying the relative impact of external backward and forward patent citations on the
market valuation of U.S. semiconductor firms, as measures of knowledge spillovers to and from
other firms. Deng finds that externally cited patents may contribute to market value as much as
half of the firm’s own R&D investments.

Similarly, Chin, Lee, Chi, and Anandarajan (2006), examining the impact of patent
citations, and spillovers from R&D performed by other firms on Taiwanese semiconductor firm
valuation, find that firms with more highly cited patents have higher market valuations. In
addition, they find firms’ market value is positively related to R&D performed by other firms,
indicating that spillovers are significant. They also disaggregate semiconductor producers by

The study finds an internal rate of return of 67% on all R&D investments in measurement technology and
standards in the semiconductor industry. Note that this excludes any consumer's surplus beyond the estimated
cost savings (which might ultimately be passed on to consumers in competitive market segments).
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position in the industry value chain (i.e., front-end fabrication, back-end assembly and test,
design only), and find effects that vary greatly by industry segment. But note that, as in all
studies using patent citation measures as control variables, it is not reasonable to interpret
estimated coefficients in these models as causal effects.?® Also, these studies do not generally
provide useful information about what specific innovations are generating observed economic
impacts.

However, there have been studies that break these innovation input indicators into
distinct technological or scientific categories, which permits analysis of what categories of
innovations, or technical and scientific areas, have generated different levels of economic
impact, on average. Yu (2006) studied the effect of process R&D on a single semiconductor
firm's manufacturing costs; Chesbrough and Liang (2008) analyzed the returns to internal and
external contract R&D investment, as separate categories, using firm level data for the Chinese
semiconductor industry. Torero (2001 ) analyzes the effect of patenting and scientist stocks on
startup behavior in Silicon Valley and Route 128 semiconductor companies.

A fourth approach uses direct indicators of innovation adoption (for example, one might
imagine using product “tear downs”, as in Chuma (2008)), to trace the diffusion of specific
innovations across firms, and exploit differences in the timing of adoption of specific
innovations by different firms to directly estimate the effects of technological innovation on
firm market value or economic performance. These are essentially “black box” models of the
private economic impacts of innovation investments, but advance the field by utilizing direct
measures of adoption of innovations in order to estimate private returns to adoption of specific
technological innovations. Lou, Lee, Gong, and Lin (2010) examine the effects of technical
innovation (distribution of semiconductor production capacity by technology node, indexed by
the critical feature size, F, discussed earlier) on the market value of U.S. semiconductor
companies, and find a positive impact.

A fifth approach involves so-called “event studies” of the impact of announcements of
specific research projects, results, or innovative new product introductions on stock market
value. This permits another type of estimate of private benefit from a specific technological

2 For example, it is not sensible to argue that an increase in externally cited patents itself causes an increase in
market value for the firm. If it did, any firm could increase its market value by simply increasing the number of
external patents it cited whenever it filed a new patent application of its own! The point is that the external patent
cites are really a proxy for something else that we are not measuring directly. Similar arguments apply to the
interpretation of other patent citation indicators.
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innovation. Austin (1993) first applied this sort of model to analyze the effect of biotech
patenting on biotechnology firm valuations. Examples of this approach applied to product
categories that include semiconductors include Sood and Tellis (2009 ), who look at the impact
of innovation announcements on stock market prices. They distinguish between “setup”
(alliances, funding, expansions), development (prototypes, patents, product pre-
announcements), and marketing (product launches) announcements, and find that
development announcements seem to have the greatest effects.

Along similar lines, Raghu, Woo, Mohan, and Rao (2008), apply the event study
methodology to patent infringement litigation announcements rather than patent
announcements per se, while Wang, Chiu, Chen, Yu, and Lin (2009), looked at the
announcement effect of patent applications on Taiwanese electronics companies' stock prices.
In a related but somewhat different sphere, Hughes, Lenway, and Rayburn (1997) analyze the
impact of US trade policy action announcements on U.S. semiconductor firm stock prices.
Unfortunately, these studies provide little insight into the reasons—the why and how—of
different particular events creating different economic impacts on firms.

Conclusions and Implications for U.S. Science Agencies

The modern empirical economic analysis of technological innovation began roughly 50
years ago, in the late 1950s, with detailed studies of the institutional, technical, and economic
details of the process through which particular innovations made their economic impact felt.
The early pioneers built structural models of the sectors in which the innovations occurred, and
directly linked technological developments to shifts in industrial supply and demand for
affected products. These early studies required a great deal of researcher investment in sector-
specific data and analysis, but also produced great insights into the process of innovation in the
sector studied, and a definitive understanding of the nature and impact of scientific research
and technological innovation in that particular sector. For example, Zvi Griliches’ pioneering
studies of the development and diffusion of hybrid corn continue to guide our understanding of
agricultural innovation, the rationale for federal research investments, and the mechanism
through which the federal investment in agricultural research generated great economic
returns for this nation.

The continuing explosion in inexpensive computing power, the proliferation of large
scale economic databases, and the computerization of journals and patent data, has shifted the
center of gravity for empirical research on innovation to the statistical harvesting of empirical
regularities across broad swatches of sectors and industries. Social scientists have turned to the
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readily and increasingly available computerized data that our information society now provides
on certain measured correlates of innovation—patents, scientific publications, and their
citations, data “scraped” off of public web sites—and have set about developing statistical
models and data mining techniques to unleash that cheap computer power on these vast new
databases. That effort is clearly paying off, particularly in methods and models that trace out
linkages and pathways between different research performers, their innovative outputs, and
commercial technology-intensive products.

But at the same time, much useful insight can still be had only by investigating what is
going on inside the “black box,” and these large-scale, data-driven methods do not usually
provide visibility into how it is, precisely, that a new concept or idea ends up having a large
economic impact. One of the lessons of this review is that much can be learned from studying
the process of innovation in a particular sector in greater detail. The first part of this essay was
intended to point out that we really now know quite a bit about the mechanics of how those
staggeringly high rates of price decline in semiconductors came about, and can even predict the
economic consequences of changes in a few key technical parameters that are central to this
very important industry.

We may even be approaching the point where we can usefully provide a first-order
approximate evaluation of the economic merits of alternative research programs that propose
to alter one or another of these key technical parameters in the semiconductor industry. To
some extent this may be unique to the semiconductor industry, where a huge amount of public
information is being continually updated through the ITRS roadmapping process. Indeed, the
apparent success of the ITRS in ratcheting up the rate of technological innovation in
semiconductors suggests that this is an experience that may be worth studying by other
industrial sectors with large numbers of participants and complex technical coordination
problems. For example, could a public-private technology roadmapping partnership help the
U.S. better define a technology strategy that meets its national energy policy goals? These sorts
of questions seem worth exploring.

How does all this relate to U.S. science agencies? Historically, much of the economic
research on innovation funded by some of these agencies has been concerned primarily with
retrospective program evaluation, and intended to demonstrate relevance and earn political
support. This is certainly understandable, given the recent and sometimes contentious history
of the post-war public-private partnership that is the U.S. R&D system. But an equally valuable
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goal would be for research on technological innovation to provide insight to policymakers on
what kinds of research projects are likely to provide the greatest social return to the nation.

Insights about how to best predict the economic impact of research projects, based on
the organizational, institutional, and technical details of the project, can improve the efficiency
of the national research investment. Rather than primarily looking backward, a valuable thrust
for economic research on innovation would be to invest in economic methods that look
forward, that seek to peek inside the black box, in order to provide sound advice on maximizing
the economic return on public technology investments.
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Quality-Adjusted Price Decline
Rates, Annualized

CAGR

03:1-96:1
96:1-00:1
00:1-04:1
04:1-07:4

Source: Author’s calculations,

using industrial production
price indexes constructed by
Federal Reserve,

Board of Governors.

Processors

All Computer
-44 . 0%
-67.0%
-53.5%
-22.2%

Desktop

92:1-96:1 -3.1%
96:1-00:1 -46.4%
00:1-04:1 -42.9%
04:1-07:3 -28.9%

Mobile
-44 0%
-68.2% -70.2%
-61.6% -59.4%
-31.6% -16.6%
DRAM Flash
-20.9%
-27.1%
-28.4%
-36.8%
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Source: Intel, reported in Bill Holt, "Facing the Hot Chip Challenge (Again)," presented at Hot Chips 17,
Stanford University, August 2005.



NIST Economic Impact Studies in Semiconductor Technology Area Since 1995

Intramural Research
Year Project Title

1999 IGBTsemiconductors

2001 Josephson voltage standard

2008 Superfilling models & techniques

2008 Low-K materials characterization

Sectoral Research Study

2007 Semiconductor Measurement

ATP Program

2006 Displaytech

Output

design automation software

standard reference material

research models & techniques

materials characterization

metrology, materials, software

FLCOS IC-based displays

Sources: Available at http://www.nist.gov/director/planning/studies.cfm.
http://www.nist.gov/director/planning/planning.cfm
http://www.atp.nist.gov/eao/gcr06-893.pdf
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Internal Rate Benefit-Cost

of Return

76%

877%

79%

N/A

N/A

33%

Ratio

23

3.3

N/A



