text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Engineering (ENG)
design element
ENG Home
About ENG
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
Career Opportunities
See Additional ENG Resources
View ENG Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers in Research and Innovation (EFRI)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional ENG Resources
NSF National Nanotechnology Initiative
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Discovery
Robot Fish Can Trick the Real Thing

NSF CAREER awardee studies the behavior of schooling fish and creates biologically inspired robots that may someday help preserve marine life

Photo of two second generation robotic fish.

The second generation of robotic fish developed in Maurizio Porfiri's laboratory.
Credit and Larger Version

March 7, 2011

Scientists have long turned to nature for inspiration and innovation. From unlocking the secrets of spider silk to create super-strong materials to taking hints from geckos for new adhesives, clues from the natural world often lead to advances in our practical world. But the relationship between engineering and nature has been largely one-directional, with humans reaping the majority of the benefits of discovery.

What if it was possible to close the loop, and combine human ingenuity and nature's wisdom to protect a species or ecosystem?

Maurizio Porfiri, assistant professor of mechanical engineering at the Polytechnic Institute of New York University, is one step closer to that goal through his research into the behavior of schooling fish, which is funded by a prestigious NSF Faculty Early Career Development (CAREER) award. Porfiri's findings led him to create a series of biologically inspired robots that may help preserve and protect marine life.

"Studies of schools of fish, flocks of birds and herds of animals have inspired robotic systems designed for our own applications," said Porfiri. "But I wanted to see if I could close the gap, bringing some of those benefits back into the natural world."

A lifelong animal lover who recalls childhood aspirations of becoming a zookeeper, Porfiri began his studies of fish schooling by examining how leadership is established within these populations. "Schooling fish have a rich system of information sharing," explains Porfiri. "They decide when to school based on a wide variety of factors, including vision and pressure cues from other fish. By studying these cues, we can learn how school members recognize--and follow--a leader."

Porfiri posited that if he could enforce leadership by an external member--in this case, a robot that actively engages the group--he could influence the direction and behavior of schooling fish. This could prove a life-saving advantage for marine populations in the event of oil or chemical spills or other natural disasters. Porfiri also envisions the ability to lead fish away from man-made dangers like turbines.

Porfiri's background in dynamical systems, mechanics of advanced materials and underwater robotics aided in the creation of robotic "leader" fish that, while not especially lifelike at first glance, are deceptively agile swimmers. When deployed in an environment with groups of gregarious fish, these robotic members have been effective at influencing the school's behavior. Porfiri suggests that one of the secrets to the robots' ability to successfully school with real fish may lie in their mimicry of the swim characteristics of real fish.

This first generation of robotic fish is capable of swimming along a plane, and future generations will be able to dive and surface. In laboratory observations, Porfiri and his team have noted a variety of interaction patterns between groups of gregarious fish and the underwater robot, including tracking, milling and following, hinting that the group's behavior can be altered by a robotic member.

In the meantime, the NSF CAREER grant, which also supports community outreach, gives Porfiri the opportunity to take his work beyond the lab to recapture the old dream of spending his days at the zoo. Throughout the academic year, he and his students can be found at the New York Aquarium, where they nurture a passion for math, science and engineering among local elementary and middle school students. The young students engage in authentic robot design experiments, creating custom caudal fins for robotic fish. By deploying robots equipped with these fins during test swims, the classes learn how fin size and shape affect swimming performance.

-- Hallie Deaktor Kapner, Polytechnic Institute of New York University

This Behind the Scenes article was provided to LiveScience in partnership with the National Science Foundation.

Investigators
Maurizio Porfiri

Related Institutions/Organizations
Polytechnic Institute of New York University

Locations
New York

Related Programs
Dynamical Systems

Related Awards
#0745753 CAREER: Guidance and Control of Fish Shoals using Bio-Mimetic Robots

Total Grants
$445,738

Related Websites
LiveScience.com: Behind the Scenes: Robot Fish Can Trick the Real Thing: http://www.livescience.com/12968-robot-fish-school-bts-110225.html
Maurizio Porfiri's Website: http://faculty.poly.edu/~mporfiri/index.htm
Maurizio Porfiri Profile: http://www.poly.edu/user/mporfiri
Biologically Inspired Robots: Laboratory Media: http://faculty.poly.edu/~mporfiri/media.htm
New York Aquarium: http://www.nyaquarium.com/

border=0/


Email this pagePrint this page
Back to Top of page