text-only page produced automatically by LIFT Text
Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation HomeNational Science Foundation - Environmental Research and Education
Environmental Research and Education
design element
ERE Home
About ERE
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Advisory Committee
See Additional ERE Resources
View ERE Staff
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional ERE Resources
Follow ERE on Twitter
ERE Funding Opportunities


At AAAS: Biocomplexity Panel on Human-Nature Interactions
Updates on NSF projects in Kenya, China, Hawaii, Wisconsin, Amazon

NSF PR 04-017 - February 14, 2004

Media contacts: Cheryl Dybas, NSF  (703) 292-7734 cdybas@nsf.gov
Sean Kearns, NSF  (703) 292-7963 skearns@nsf.gov

ARLINGTON, Va.—Do policies protect pandas in China? Do "poverty traps" deplete soil fertility in Kenya? Do parallels exist between logging in the American Midwest and the Brazilian Amazon?

Questions like these are not simple to answer. To address them, the National Science Foundation in 1999 launched a major research effort aptly called "Biocomplexity in the Environment."

On Saturday, Feb. 14, from 9 a.m. to noon at the annual meeting of the American Association for the Advancement of Science (AAAS), an expert panel will describe results from six NSF-supported biocomplexity projects that focus on the interplay between human and natural systems. Along with describing efforts involving the pandas, poverty traps and logging parallels, the panel (subtitled "Reciprocal Interactions") will profile the linkages between urban development and bird habitat around Puget Sound; between Polynesian culture and Hawaiian ecology; and between shoreline development, recreational anglers, and fish populations in Wisconsin lakes.

Providing about $35 million in funding per year, NSF's biocomplexity program also focuses on these broad areas: biogeochemical cycles, genomic studies in environmental science and engineering, developing instrumentation, and the use and impacts of materials in engineering and society.

According to NSF Director Rita Colwell, "Biocomplexity investigations will provide a more complete understanding of natural processes and cycles, of human behaviors and decisions in the natural world, and of ways to use new technology effectively to observe the environment and sustain the diversity of life on Earth." (Colwell will also speak on two AAAS panels Saturday: "Oceans in our Solar System" from 9 a.m. to noon and "From Outside to Inside: Environmental Microorganisms as Human Pathogens" from 2:30 to 5:30 p.m.)

Discovering and examining these interconnections requires a systems approach, with scientists and engineers working in teams across diverse fields that include biology, physics, engineering, economics, geochemistry and others, Colwell said.

"We have powerful new technologies and tools that now make biocomplexity research possible," she said. "The biggest, most exciting scientific questions are at the interfaces of disciplines, such as computational ecology and environmental genetics."

Thomas J. Baerwald—a senior science advisor and program director in NSF's Directorate for Social, Behavioral, and Economic Sciences—is a co-organizer of the AAAS "Reciprocal Interactions" session. Understanding the complex interactions between people and their natural and built environments, he said, requires scientific analysis and synthesis over long periods of time and diverse geographic regions; and it also requires teams of scientists and engineers from diverse fields to examine various feedback mechanisms, thresholds and lags that make identifying cause-effect relationships more difficult.

"Whenever one examines the complex ways that people interact with natural systems," Baerwald said, "one gains new insights regarding how people can sustain and nourish the environment while they seek to improve their own well-being. This holds whether one is considering people as individuals, as members of groups, or through the organizations and governments that they create."

Baerwald will also address "Approaches to Research and Education about Complex Environmental Systems" as part of a 1:00 to 4:00 p.m. symposium on chemistry and high latitudes Monday, Feb. 16.

The Feb. 14 panel on human-nature interactions will profile these NSF Biocomplexity in the Environment projects:

"Complex Interactions Among Policies, People, and Panda Habitat" presented by Jianguo (Jack) Liu, Michigan State University: At 500,000 acres, the Wolong Nature Reserve in China's Sichuan Province is one of the largest homes to endangered giant pandas. To protect panda habitat, the Chinese government has implemented policies to boost hydropower production (to reduce reliance on firewood), to prevent illegal forest harvesting and to return cropland to forests. Through field observations, socioeconomic surveys and advanced technologies, Liu and his colleagues are examining how, collectively, these policies may be complementary or counterproductive in protecting pandas. For example, incentives to participate in forest conservation efforts have led to an increase in households, which in turn creates more demand for croplands and energy from wood. That might change, the researchers suggest, if households participating in the conservation program are rewarded with electricity instead of cash. The $1.1 million, 3.5-year project began in 2002.

"Emergent Land-Use Patterns of Social-Biophysical Interactions in Complex Systems" presented by Peter Deadman, Indiana University: The long-ago frontier forests of Indiana and the current frontier forests of the Brazilian Amazon region are worlds apart, but the natural systems of both are affected by factors of diversity among the households within them. In a project led by Elinor Ostrom, Tom P. Evans and others at Indiana University, researchers developed models incorporating soil quality, slope, land cover, crop prices, climate change, forest attributes, satellite imagery, aerial photos and household surveys. By simulating autonomous households making land-use decisions, they are examining how various factors may increase or decrease the range of forests. "A critical component to modeling decisions," the researchers said, "is how agents (i.e., simulated households) learn from past experience and adapt these experiences to future land-use decisions." The $2.7 million, 5-year project began in 2001.

"Human Ecodynamics in the Hawaiian Ecosystem, 1200-200 Years Before the Present" presented by Patrick Kirch, University of California at Berkeley: About 1200 years ago, Polynesians first arrived in Hawaii and found a diversity of ecosystems. Over the next millennium, they adapted to them in various ways, altered them substantially, and, in turn, had their culture shaped by the islands' changing nature. Then, two centuries ago, Europeans found the islands. Now Kirch and a team of archaeologists, ecologists, soil scientists, demographers and paleobotanists are attempting to discern the dynamics of the Polynesians’ interactions with the environment, pre-European contact, by focusing on two dryland areas, one on Maui and one on Hawaii. While the archipelago offers unique study opportunities, the researchers say some of the cultural and natural evolutionary processes that occurred there—such as widespread deforestation, soil degradation, unprecedented population growth, migrations into marginal lands, and increased political and economic centralization—are occurring on a global scale today. The 42-month, $1.4 million project began in late 2001.

"Divergent Dynamics of Riparian Land, People, and Lakes" presented by Timothy Kratz, University of Wisconsin-Madison: Into some Wisconsin lakes, humans introduced exotic species, such as the rusty crayfish. Along shores of others, they removed fallen trees that give fish what biologists call "coarse woody habitat"—or CWH. According to Kratz and colleagues Stephen Carpenter and Robert Provencher of Wisconsin's Center for Limnology, activities like these can affect life beneath and around the lake. For example, fish growth and community structure are tied closely to the refuges of fallen trees and living plants, and "human attitudes and behaviors are in turn influenced by the appearance of the shoreline and the quality of fishing." They found that as shoreline residential development increases, CWH quickly declines, and largemouth bass increasingly prey upon yellow perch. For an in-depth look at the lakes, the researchers developed two models. One focuses on the social dynamics of anglers; the other on the relationships between lakeshore development, property-owner decisions, and a lake’s ecological state. The roughly $3 million, five-year project began in 2000.

"The Interplay Between Small Farmers and Fragile Tropical Agro-ecosystems in Kenya" presented by Alice Pell, Cornell University: According to Pell and colleagues from the Kenyan Agricultural Research Institute and the World Agroforestry Centre, "When both people and their natural environment operate 'at the margin,' as frequently occurs on small farms in Kenya and elsewhere in the developing world, small changes in the natural resource base often have profound effects on people's lives." Focusing on biophysical and socioeconomic processes characteristic of farms in the Kenyan highlands, they hope to understand what happens to humans—and the environment—as people fall into and emerge from poverty. From 238 farms, they gathered data on soil nutrition, crops, livestock, home gardens, income, land use, labor and investment patterns. In both regions of the study, they found a similar profile of community earning wherein a smaller group earned roughly three times per capita than the majority, and in one region they found limited movement out of poverty, suggesting the existence of "poverty traps." The roughly $1.6 million, 5-year project began in 2002.

"Interactions Among Urban Development, Land Cover Change and Biodiversity" presented by Marina Alberti, University of Washington: What do you get when you cross sophisticated birdwatching with software that simulates demographic, market and real-estate development? Alberti and her colleagues expect it to result in a set of integrated models that detail how urban development and land-cover changes in the Puget Sound region affect diversity and nest predation for birds and household preference and development choices among human residents. To model land development, they used UrbanSim, an open-source program developed at the University of Washington that considers, at the parcel level, demand for real estate, prices, and other factors. The roughly $1.1 million, 40-month project began in 2001.

-NSF-


Related news releases and web sites:

"NSF Awards $31.9 Million in Grants to Study Biocomplexity in the Environment," NSF news release, Oct. 14, 2003: "To better understand the interrelationships among living things from molecular structures to genes to ecosystems—and how they interact with their environment—the National Science Foundation (NSF) has awarded $31.9 million in 30 research grants to scientists and engineers across the country...." http://www.nsf.gov/od/lpa/news/03/pr03116.htm

"Biocomplexity in the Environment," NSF Fact Sheet, October 2003 http://www.nsf.gov/od/lpa/news/03/fs03_biocomplexity.htm

Funding Opportunities: Biocomplexity in the Environment: "Included in the ERE portfolio is Biocomplexity in the Environment (BE), one of NSF's Priority Areas. The BE program is a multi-year investment designed to promote new approaches to investigating the interactivity of biota and the environment...." http://www.nsf.gov/geo/ere/ereweb/fund-biocomplex.cfm

"Frontiers in Biocomplexity Science: Reciprocal Interactions Between Human and Natural Systems": AAAS symposium from track "Connections in the Living World," Saturday, Feb. 14, 2004, 9 a.m.-noon
http://php.aaas.org/meetings/MPE_01.php?detail=10147

"Researchers Tie Worldwide Biodiversity Threats to Growth in Households - Pandas in China face encroachment...." NSF news release, with images, Jan. 12, 2003: "Scientists from Michigan State (MSU) and Stanford universities, in a fresh look at world population dynamics, have revealed evidence that increased numbers of households, even where populations are declining, are having a vast impact on the world's biodiversity and environment...."
http://www.nsf.gov/od/lpa/news/03/pr0306.htm

NSF award abstract "BE/CNH: Complex Interactions Among Policies, People, and Panda Habitat in the Wolong Nature Reserve Landscape”: Investigator Jianguo Liu jliu@perm3.fw.msu.edu...Michigan State University...Abstract: Human activities are widely recognized as a major force behind rapid landscape changes and loss of biodiversity around the world, including those in numerous nature reserves....
https://www.fastlane.nsf.gov/servlet/showaward?award=0216450
Panda habitat research site:
http://www.panda.ur.msu.edu/

NSF award abstract "Biocomplexity Research: Agent-Based Models of Land Use Decisions and Emergent Land Use Patterns": Investigator Elinor Ostrom ostrom@indiana.edu...Indiana University...Abstract: The primary goal of this project is to explain long-term, complex change processes in human-bioecological systems-especially forested regions....We develop two agent-based models to explain land-use patterns in the frontier and post-frontier Midwest of the United States and the frontier of the Brazilian Amazon....
https://www.fastlane.nsf.gov/servlet/showaward?award=0083511
Research project site:
http://www.csiss.org/events/other/agent-based/additional/parker.pdf

NSF award abstract "BE/CNH: Human Ecodynamics in the Hawaiian Ecosystem, 1200 to 200 Years Before the Present": Investigator Patrick V. Kirch kirch@sscl.berkeley.edu...University of California at Berkeley...Abstract: The project will study the complex, dynamic interactions between an isolated human population and its natural environment over the course of 1,000 years, focusing on two sample landscapes in the Hawaiian Islands (specifically, Maui and Hawaii Islands)....
https://www.fastlane.nsf.gov/servlet/showaward?award=0119819
Research project site:
http://sscl.berkeley.edu/~oal/research/biocomplexity/biocomplexity.htm

NSF award abstract "Biocomplexity: Divergent Dynamics: Complex Interactions of Riparian Land, People and Lakes": Investigator Stephen R. Carpenter srcarpen@facstaff.wisc.edu...University of Wisconsin... Abstract: Surprises -large, unexpected changes from apparently small causes -are common in systems of people and nature... This research project addresses this question for systems composed of (Wisconsin) lakes, their riparian vegetation and land use, and social and economic organizations of lake users.
https://www.fastlane.nsf.gov/servlet/showaward?award=0083545
Research project site:
http://biocomplexity.limnology.wisc.edu/

NSF award abstract "BE/CNH: Homeostasis and Degradation in Fragile Tropical Agroecosystems": Investigator Alice N. Pell ap19@cornell.edu...Cornell University...Abstract: When both people and their natural environment are "at the margin," small changes in the natural resource base often have important effects on people's lives... Understanding the interplay between smallholder farmers in Kenya and their natural environment is the primary goal of this project....
https://www.fastlane.nsf.gov/servlet/showaward?award=0215890
Cornell news article:
http://www.news.cornell.edu/Chronicle/02/9.12.02/Kenyan_poverty.html

NSF award abstract "BE/CNH: Modeling Interactions Among Urban Development, Land-Cover Change, and Bird Diversity": Investigator Marina Alberti malberti@u.washington.edu...University of Washington...Abstract: The interactions between urban development and ecological processes are extraordinarily complex... This project will develop an integrated model of urban development and land-cover change in the central Puget Sound region....
https://www.fastlane.nsf.gov/servlet/showaward?award=0120024
Urban Ecology Research Laboratory:
http://www.urbaneco.washington.edu/
Research project poster:
http://www.urbaneco.washington.edu/final_biocomplexity2003poster.pdf


The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering, with an annual budget of nearly $5.58 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives about 40,000 competitive requests for funding, and makes about 11,000 new funding awards. The NSF also awards over $200 million in professional and service contracts yearly.

Receive official NSF news electronically through the e-mail delivery system, NSFnews. To subscribe, send an e-mail message to join-nsfnews@lists.nsf.gov. In the body of the message, type "subscribe nsfnews" and then type your name. (Ex.: "subscribe nsfnews John Smith")

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov/start.htm
News Highlights: http://www.nsf.gov/od/lpa/start.htm
Newsroom: http://www.nsf.gov/od/lpa/news/media/start.htm
Science Statistics: http://www.nsf.gov/sbe/srs/stats.htm
Awards Searches: http://www.fastlane.nsf.gov/a6/A6Start.htm

 

Email this pagePrint this page
Back to Top of page