Email Print Share

News Release 99-040

Massive Pollution Documented Over Indian Ocean


June 8, 1999

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

An international group of scientists has documented widespread pollution covering about 10 million square kilometers of the tropical Indian Ocean--roughly the same area as the continental United States. This finding by scientists participating in the Indian Ocean Experiment (INDOEX) raises serious questions about what impact the extensive pollution is having on climate processes and on marine life in the ocean below.

INDOEX, a $25 million project, sponsored in part by the National Science Foundation, is investigating how tiny pollutant particles called aerosols are transported through the atmosphere, and their resulting effect on climate. The project is coordinated by the Center for Clouds, Chemistry and Climate (C4) at the Scripps Institution of Oceanography, a National Science Foundation (NSF) Science and Technology Center at the University of California, San Diego. Paul J. Crutzen, director of the Max Planck Institute for Chemistry and a 1995 Nobel laureate in chemistry and V. Ramanathan, director of C4 at the Scripps Institution of Oceanography, serve as co-chief scientists.

"Aerosols affect the amount of solar radiation that is absorbed and reflected back to space by the atmosphere," explained Jay Fein, program director in NSF's division of atmospheric sciences. "They can also change the composition of clouds, thereby altering the amount of solar radiation they absorb and reflect back to space. Aerosol-cloud- radiation processes are highly complex and not well understood. In fact, the effect of aerosols on our atmosphere's radiation balance is one of the largest sources of uncertainty in predicting future climate. INDOEX was designed to reduce this uncertainty."

Ramanathan said the team of scientists was shocked by the extent of pollution they encountered during the six-week field experiment that began in early February and continued through the end of March 1999.

The INDOEX scientists reported finding a dense, brown haze of pollution extending from the ocean surface to altitudes of one to three kilometers. The haze layer covered much of the research area almost continually during the six-week experiment. The affected area includes most of the northern Indian Ocean, including the Arabian Sea, much of the Bay of Bengal, and spills over into the equatorial Indian Ocean to about 5 degrees south of the equator.

The haze is caused by high concentrations of small particles known as aerosols that are usually less than a few micrometers in diameter. Comprised primarily of soot, sulfates, nitrates, organic particles, fly ash and mineral dust, the particles often reduced visibility over the open ocean to less than 10 kilometers, a range typically found near polluted regions of the United States and Europe. The haze layer also contains relatively high concentrations of gases, including carbon monoxide, various organic compounds, and sulfur dioxide, providing conclusive evidence that the haze layer is caused by pollution.

Asia and the Indian subcontinent, which together have a population of more than 2 billion people, emit large quantities of pollutants that can be carried to the Indian Ocean during the northern hemisphere winter by monsoon winds from the northeast. Preliminary results indicate that aerosols in the polluted region scatter the incoming solar radiation and reduce the amount of energy absorbed by the ocean surface by as much as 10 percent.

"If you cut the amount of sunlight going into the ocean, you will also impact the amount of moisture evaporating from the sea surface either regionally or globally and, consequently, the amount of rainfall that will be generated," Ramanathan said. "So the entire hydrological cycle is being perturbed." A reduction in the amount of sunlight reaching the ocean surface can also have a detrimental effect on plant life that depends on photosynthesis, including plankton, which provides a key link in the marine food chain.

One of the primary goals of INDOEX is to determine the role that aerosols play in global climate change. Early results indicate that the pollutants play a dual role in that they have both warming and cooling effects. The tiny particles produce a cooling effect in that they scatter sunlight back to space. By acting as seeds for cloud condensation, they also produce an indirect cooling effect by increasing both the longevity and reflectivity, or albedo, of clouds. The pollutants have a warming effect, however, in that they absorb a large amount of sunlight. The airborne particles over the northern Indian Ocean are unusually dark because they contain large amounts of soot and other materials from incompletely burned fuels and wastes. Dark aerosols lead to the increased absorption of solar radiation. "The soot contributes a substantial amount of heating of the atmosphere, but it also reduces the amount of sunlight reaching the ocean," Ramanathan said. "So, it is just too early to say at this point whether the net effect is one of cooling or warming."

The dark airborne particles over the Indian Ocean appear to be markedly different from those over North America and Europe, where advanced pollution control technologies remove much of the dark material and yield particles that are relatively brighter. Thus, the impact on climate processes of pollution particles stemming from Asia appears to be fundamentally different from those originating in the United States and Europe. The measurements taken in the Indian Ocean are also important because they characterize emissions from the rapidly emerging economies in this region. Emissions of pollutants are expected to increase over the Indian Ocean and in other parts of the globe as similar economies grow.

The INDOEX scientists were surprised to find that such a dense pollution layer in the Indian Ocean was caused by sources at least a thousand or more kilometers away. They suggest that the pollution events observed in INDOEX may be symptomatic of large-scale pollution transport that may be occurring in other regions of Earth.

INDOEX was also funded by the U.S. Department of Energy, the National Oceanic and Atmospheric Administration, and NASA.

-NSF-

Editors: B-roll is available from the Scripps Institution of Oceanography. Contact Cindy Clark at cclark@ucsd.edu or (619) 534-3624.

Media Contacts
Cheryl L. Dybas, NSF, (703) 292-8070, email: cdybas@nsf.gov

Program Contacts
Jay S. Fein, NSF, (703) 292-8527, email: jfein@nsf.gov
Pamela L. Stephens, NSF, (703) 292-8523, email: pstephen@nsf.gov

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website: nsf.gov
NSF News: nsf.gov/news
For News Media: nsf.gov/news/newsroom
Statistics: nsf.gov/statistics/
Awards database: nsf.gov/awardsearch/

Follow us on social
Twitter: twitter.com/NSF
Facebook: facebook.com/US.NSF
Instagram: instagram.com/nsfgov