text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 05-187
How Hot Tuna (and Some Sharks) Stay Warm

Specialized muscles generate heat and swimming power

Red muscle temperature of laminid sharks is greater than that of the surrounding water.

Lamnid sharks maintain an elevated temperature in the red muscle near the backbone.
Credit and Larger Version

October 27, 2005

Scientists now have direct evidence that the north Pacific salmon shark maintains its red muscle (RM) at 68-86 degrees Fahrenheit (F), much warmer than the 47 F water in which it lives. The elevated muscle temperature presumably helps the salmon shark survive the cold waters of the north Pacific and take advantage of the abundant food supply there. The heat also appears to factor into the fish's impressive swimming ability.

During what some would say was a better-than-average day at work, Robert Shadwick of the Scripps Institution of Oceanography and his colleagues went salmon shark fishing in the Gulf of Alaska. After catching specimens over 7-feet long and weighing more than 300 pounds, the researchers measured temperatures throughout the sharks' bodies and tested the mechanical power of RM samples.

Their results, published in the Oct. 27 issue of the journal Nature, showed that at 50 F, RM produced only 25-50 percent of the power it produced at 79 F. The researchers concluded that RM temperatures below 68 F could permanently impair muscle function.

National Science Foundation (NSF) program manager, Ione Hunt von Herbing said, "Knowing specific details about the anatomy and physiology of salmon sharks provides key insight into their ability to produce such power and speed during swimming. The knowledge could translate into better designs for underwater vehicles."

The study was funded by NSF's integrative organismal biology program.

Salmon sharks are lamnids, a group of sharks that also includes the mako and great white. Numerous studies have shown that lamnid sharks and tunas share many anatomical and physiological specializations that endow them with their impressive swimming power and speed. In contrast to other fish where the RM is near the skin, the RM of these sharks and tunas is near the backbone. Even though the ancestors of bony tuna and cartilaginous sharks diverged more than 400 million years ago, selection pressure for high-performance swimming in each group seems to have occurred independently about 50 million years ago.

Throughout its life, a salmon shark never stops swimming because it will sink. The body heat generated from continuous swimming elevates the RM temperature, which in turn, warms the surrounding white muscle and allows the shark to survive the frigid waters of the north Pacific. If a shark stops swimming, it could die from cold exposure.

-NSF-

Media Contacts
Richard (Randy) Vines, NSF, (703) 292-7963, rvines@nsf.gov

Program Contacts
Ione Hunt von Herbing, NSF, (703) 292-8413, ihuntvon@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page