text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 07-143
Getting Light to Bend Backwards

Uniquely sandwiched materials coax light to defy nature and skirt the laws of refraction

An artist's rendition of the new light-bending metamaterial.

An artist's rendition of the new light-bending metamaterial.
Credit and Larger Version

October 16, 2007

While developing new lenses for next-generation sensors, researchers have crafted a layered material that causes light to refract, or bend, in a manner nature never intended.

Refraction always bends light one way, as one can see in the illusion of a "bent" drinking straw when observed through the side of a glass. A new metamaterial crafted from alternating layers of semiconductors (indium-gallium-arsenic and aluminum-indium-arsenic) acts as a single lens that refracts light in the opposite direction.

Refraction is the reason that lenses have to be curved, a trait that limits image resolution. With the new metamaterial, flat lenses are possible, theoretically allowing microscopes to capture images of objects as small as a strand of DNA. The current metamaterial lens works with infrared light, but the researchers hope the technology will expand to other wavelengths in the future.

Earlier efforts have crafted metamaterials that bend light in a similar way, but this is the first to do so using a 3-dimensional structure and a metamaterial comprised entirely of semiconductors. Those traits will prove critical for incorporating the technology into devices such as chemical threat sensors, communications equipment and medical diagnostics tools.

The paper describing the technology appeared online Oct. 14, 2007, in Nature Materials.

The research was developed primarily at NSF's Mid-Infrared Technologies for Health and the Environment Engineering Research Center and NSF's Princeton Center for Complex Materials Materials Research Science and Engineering Center.

Additional information is available in the Princeton University press release at: http://www.princeton.edu/main/news/archive/S19/21/37O65/

-NSF-

Media Contacts
Joshua A. Chamot, NSF, (703) 292-7730, jchamot@nsf.gov
Hilary Parker, Princeton University, (609) 258-4597, haparker@princeton.edu

Program Contacts
Maija M. Kukla, NSF, (703) 292-4940, mkukla@nsf.gov
Lynn Preston, NSF, (703) 292-5358, lpreston@nsf.gov

Principal Investigators
Claire Gmachl, Princeton University, (609) 258-3500, cgmachl@princeton.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

border=0/


Email this pagePrint this page
Back to Top of page