text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 08-170
Paleozoic 'Sediment Curve' Provides New Tool for Tracking Sea-floor Sediment Movements

Follows sea-level rise and fall between 542 and 251 million years ago

Photo of ancient sediments in Brittany, France.

Ancient sediments like these in Brittany, France, help reconstruct Paleozoic sea-level history.
Credit and Larger Version

October 2, 2008

As the world looks for more energy, the oil industry will need more refined tools for discoveries in places where searches have never before taken place, geologists say.

One such tool is a new sediment curve (which shows where sediment-on-the-move is deposited), derived from sediments of the Paleozoic Era 542 to 251 million years ago, scientists report in this week's issue of the journal Science. The sediment curve covers the entire Paleozoic Era.

"The new Paleozoic sea-level sediment curve provides a way of deriving predictive models of sediment migration on continental margins and in interior seaways," said Bilal Haq, lead author of the Science paper and a marine geologist at the National Science Foundation (NSF). The paper's co-author is geologist Stephen Schutter of Murphy Oil International in Houston, Tx.

"The sediment curve is of interest to industry, and also to scientists in academia," said Haq, "as the rise and fall of sea-level form the basis for intepretations of Earth history based on stratigraphy."

Through stratigraphy, the study of rock layering (stratification), scientists can derive a sequence of time and events in a particular region. Recent advances in the field of stratigraphy, including better time-scales for when sediments were deposited, and availability of data on a worldwide basis, are allowing scientists to reconstruct sea level during the Paleozoic.

The rises and falls of sea level during this period form the basis of stratigraphic interpretations of geology not only in the sea, but on land. These sea level increases and decreases are used extensively, Haq said, in predictive models of sediment movements.

The current Science paper is a shorter version of the results of a global synthesis of Paleozoic stratigraphy on which the authors have worked for many years.

"We hope that the publication of a sediment curve for this entire era will enhance interest in Paleozoic geology," said Haq, "and help the exploration industry in its efforts to look at older and deeper sediments."

-NSF-

Media Contacts
Cheryl Dybas, NSF, (703) 292-7734, cdybas@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Cover of October 3, 2008, issue of Science magazine.
The researchers' findings are published in the Oct. 3, 2008, issue of Science magazine.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page