text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
News
design element
News
News From the Field
For the News Media
Special Reports
Research Overviews
NSF-Wide Investments
Speeches & Lectures
NSF Current Newsletter
Multimedia Gallery
News Archive
News by Research Area
Arctic & Antarctic
Astronomy & Space
Biology
Chemistry & Materials
Computing
Earth & Environment
Education
Engineering
Mathematics
Nanoscience
People & Society
Physics
 

Email this pagePrint this page


Press Release 12-062
This Is Your Brain--It's Organized Like a Woven Cloth and Not So Tangled As Once Thought

Scientists: The connectivity of the brain exhibits a more grid-like structure

Image of Van J. Wedeen, MD.
Video available View video

Research determined that the pathways of the brain resemble that of a woven sheet of fabric.
Credit and Larger Version

March 29, 2012

View a video with Dr. Van Wedeen.

Have you ever wondered what your brain looks like or how it works for you?

It was previously thought the inside of the brain resembled the assembly of a bowl of spaghetti noodles. Researchers and scientists, funded by the National Science Foundation, have now discovered that a more uniformed grid-like pattern makes up the connections of the brain.

This week's issue of Science magazine details the finding in a paper titled, "The Geometric Structure of the Brain Fiber Pathways: A Continuous Orthogonal Grid."

Scientists from Harvard University, MIT's Division of Health Sciences Technology, Boston University, University Hospital Center & University of Lausanne in Switzerland, Vanderbilt University and National Taiwan University College of Medicine worked together using magnetic resonance imaging (MRI) technology to map the three-dimensional, scaffold fiber architecture of the brain. This technology, used for the first time in this manner, determined that the pathways of the brain pass through tissue that resembles a grid-like structure.

"By looking at how the pathways fit in the brain, we anticipated the connectivity to resemble that of a bowl of spaghetti, a very narrow and discreet object," said Van J.  Wedeen, associate professor of Radiology, Massachusetts General Hospital, Harvard Medical School and Martinos Center for Biomedical Imaging.

"We discovered that the pathways in the top of the brain are all organized like woven sheets with the fibers running in two directions in the sheets and in a third direction perpendicular to the sheets. These sheets all stack together so that the entire connectivity of the brain follows three precisely defined directions."

The directions of the pathways were previously difficult to determine because in embryological life the pathways run in simple directions but become very bent and folded as the brain matures into an adult and more information and skills are learned. The surface of the adult brain appears more folded and the three directions become increasingly curved and thus difficult to view definitively.

"This is the first time it has ever been determined that the geometry of the brain is described by a three-dimensional grid," said Krastan Blagoev, program director in the Mathematical & Physical Sciences Directorate at the National Science Foundation. "We are so pleased with the outcome of this important research and this significant development and look forward to learning even more information regarding the connectivity and pathways of the brain.

"The research took MRI scanners and new mathematical algorithms to determine a geometry to the relationship of nearby pathways in the brain so that each pathway was part of a two-dimensional sheet of pathways that together looked exactly like a woven sheet of fabric," said Van Wedeen.

Each pathway was part of a parallel series next to it crossed by a perpendicular series at a right angle, together which formed a woven grid. The structure was part of a three-dimensional scaffold connections of the brain conformed to the extremely simple three-dimensional structure, a single woven grid with fibers in only three axes.  By using diffusion MRI and mapping the three-dimension motion of the water molecules in the brain, the scientists ran the maps through mathematical algorithms that inferred from the water motion pattern the fiber architecture of the tissue of the brain.

By comparing the human brain with those of primates, the researchers determined clues regarding the aging and other conditions of the human brain. This significant research and discovery opens the doors to a vast array of further opportunities into the inter-working of our most vital organ.

-NSF-

Media Contacts
Deborah Wing, NSF, (703) 292-5344, dwing@nsf.gov

Program Contacts
Krastan B. Blagoev, NSF, (703) 292-4666, kblagoev@nsf.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Cover of the March 30, 2012 issue of the journal Science.
The researchers' work is described in the March 30, 2012 issue of the journal Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page