text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Civil, Mechanical and Manufacturing Innovation (CMMI)
design element
CMMI Home
About CMMI
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
View CMMI Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers in Research and Innovation (EFRI)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page
All Images

Discovery
Insects Inspire Robot Design

Back to article | Note about images

Photos of cockroach and robot showing how they are used to refine robotic design.

The research methodology John Schmitt and his collaborators use is an iterative process that utilizes animal experiments and reduced-order locomotion models to inform robotic design. The models aid the development and testing of high-level control strategies that can produce robust and efficient locomotion. Comparison of the animal dynamics to both the reduced-order model and robotic dynamics can test our understanding of the underlying principles that animals employ to achieve their remarkable locomotion performance.

Credit: Robert Full, University of California, Berkeley, and Jonathan Clark, Florida State University


Download the high-resolution JPG version of the image. (164 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Illustration showing cockroach as point mass and forces on cockroach legs modeled as linear spring.

Illustration of the reduced-order, lateral-plane model utilized for investigating locomotion performance on inclines. The cockroach is modeled by a point mass and the forces produced by the tripod of legs of the cockroach are modeled with a single, actuated linear spring.

Credit: John Schmitt, Oregon State University


Download the high-resolution JPG version of the image. (159 KB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.

Photo of Oregon State University engineer John Schmitt.

Oregon State University engineer John Schmitt.

Credit: John Schmitt, Oregon State University


Download the high-resolution JPG version of the image. (1.1 MB)

Use your mouse to right-click (Mac users may need to Ctrl-click) the link above and choose the option that will save the file or target to your computer.



Email this pagePrint this page
Back to Top of page