text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Physics (PHY)
design element
PHY Home
About PHY
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Facilities and Centers
PHY Program Director Jobs
See Additional PHY Resources
View PHY Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional PHY Resources
PHY: Investigator-Initiated Research Projects
Physics in the Mathematical and Physical Sciences
Nuclear Science Advisory Committee (NSAC)
High Energy Physics Advisory Panel (HEPAP)
DCL: Announcement of Intent to use an Asynchronous Review Mechanism for Proposals
DCL: Announcement of Instrumentation Fund to Provide Mid-Scale Instrumentation for FY2014 Awards in
DCL: Int'l Activities within PHY-Potential Co-Review
PHY COV Report 2012
Response to the PHY COV Report
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page

Decadal and Regional Climate Prediction using Earth System Models  (EaSM)  Crosscutting Programs  NSF Wide Programs

CONTACTS

Name Dir/Div Name Dir/Div
Eric  C. Itsweire GEO/OCE  William  J. Wiseman GEO/PLR 
Anjuli  S. Bamzai GEO/AGS  Peter  Milne GEO/PLR 
Michael  Steuerwalt MPS/DMS  Thomas  F. Russell MPS/DMS 

PROGRAM GUIDELINES

Solicitation  13-607

SYNOPSIS

The consequences of climate variability and change are becoming more immediate and profound than previously anticipated. Over recent decades, the world has witnessed the onset of prolonged droughts on several continents, increased frequency of floods, loss of agricultural and forest productivity, degraded ocean and permafrost ecosystems, global sea level rise and the rapid retreat of ice sheets and glaciers, loss of arctic sea ice, and changes in ocean currents. These important impacts highlight that climate variability and change can have significant effects on decadal and shorter time scales, with significant consequences for plant, animal, human, and physical systems.

The EaSM funding opportunity enables interagency cooperation on one of the most pressing problems of the millennium: climate change and how it is likely to affect our world. It allows the partner agencies -- National Science Foundation (NSF) and U.S. Department of Agriculture (USDA) -- to combine resources to identify and fund the most meritorious and highest-impact projects that support their respective missions, while avoiding duplication of effort and fostering collaboration between agencies and the investigators they support.

This interdisciplinary scientific challenge calls for the development and application of next-generation Earth System Models that include coupled and interactive representations of such components as ocean and atmospheric currents, agricultural working lands and forests,  biogeochemistry, atmospheric chemistry,  the water cycle and land ice.  This solicitation seeks to attract scientists from the disciplines of geosciences, agricultural sciences, mathematics and statistics. Successful proposals will develop intellectual excitement in the participating disciplinary communities and engage diverse interdisciplinary teams with sufficient breadth to achieve the scientific objectives. We encourage proposals that have strong broader impacts, including public access to data and other research products of general interest, as well as educational, diversity, or societal impacts.

The long-term goals of this solicitation are to improve on and extend current Earth System modeling capabilities to:

  1. Achieve comprehensive, reliable global and regional predictions of decadal climate variability and change through advanced understanding of the coupled interactive physical, chemical, biological, and human processes that drive the climate system, including as they pertain to agriculture , forestry or land cover/use.
  2. Quantify the impacts of climate variability and change on natural and human systems, and identify and quantify feedback loops.
  3. Maximize the utility of available observational and model data for impact, vulnerability/resilience, and risk assessments through up/downscaling activities and uncertainty characterization.
  4. Effectively translate climate predictions and associated uncertainties into the scientific basis for policy and management decisions related to human interventions and adaptation to the projected impacts of climate change.

The EaSM-3 solicitation focuses primarily on Goal 1 (above) with the following specific areas of interest related to decadal scales: (i) Research that has the potential to dramatically improve predictive capabilities; (ii) Prediction and attribution studies; (iii) Development and applications of metrics, methods, and tools for testing and evaluating climate and climate impact predictions and characterizing their uncertainty. 

These subareas of particular interest are described in greater detail below under Program Description:  Areas of interest.  

RELATED URLS

Frequently Asked Questions: Decadal and Regional Climate Prediction Using Earth System Models (EaSM) (NSF 12-522)

News



Email this pagePrint this page
Back to Top of page