text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Mathematical & Physical Sciences (MPS)
Materials Research (DMR)
design element
DMR Home
About DMR
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
Proposals
Workshops and Reports
Research and Education Highlights
See Additional DMR Resources
View DMR Staff
MPS Organizations
Astronomical Sciences (AST)
Chemistry (CHE)
Materials Research (DMR)
Mathematical Sciences (DMS)
Physics (PHY)
Office of Multidisciplinary Activities (OMA)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Additional DMR Resources
International Collaboration
Lightsource
DMR Proposal Submission Deadline
Interagency Coordinating Committee on Ceramics Research and Development (ICCCRD)
Broadening Participation
Professional Societies
Links for Kids
Materials Websites
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 05-143
$150 Million TeraGrid Award Heralds New Era for Scientific Computing

Interoperable cyberinfrastructure now accessible to entire science and engineering community

Extensible Terascale Facility Map

TeraGrid strives to be the most comprehensive, distributed infrastructure for scientific research.
Credit and Larger Version

August 17, 2005

The National Science Foundation (NSF) has made a five-year, $150 million award to operate and enhance the Extensible Terascale Facility (ETF)--also called "TeraGrid." Researchers and educators around the country can now access a range of computing resources that will accelerate advances in science and engineering.

"Many new users from a range of scientific communities will now have access to sophisticated IT applications and computational tools. Over time, these applications will be customized to the needs of the individual or community," said NSF Director, Arden L. Bement, Jr.

TeraGrid--built over the past 4 years--is the world's largest, most comprehensive distributed cyberinfrastructure for open scientific research. Through high-performance network connections, TeraGrid integrates high-performance computers, data resources and tools, and high-end experimental facilities around the country.

"TeraGrid unites the science and engineering community so that larger, more complex scientific questions can be answered. Solving these larger challenges will, in turn, motivate the development of the next generation of cyberinfrastructure. This is a win-win situation consistent with NSF's mission to keep science and engineering at the frontier," continued Bement.

The scientists and engineers responsible for TeraGrid operations will work closely with researchers whose science requires powerful computing resources. For example, researchers using TeraGrid are exploring functions of decoded genomes, how the brain works, the constitution of the universe, disease diagnosis, and real-time weather forecasting to predict the exact locations of tornado and storm threats. TeraGrid will also help engineers design better aircraft via realistic simulations of new designs.

The new TeraGrid award includes $48 million to provide overall architecture, software integration, operations and coordination of user support. The University of Chicago will lead this effort under the guidance of Charlie Catlett, director of the TeraGrid project and former chair of Global Grid Forum. An additional $100 million will provide for operation, management and user support of TeraGrid resources at eight resource provider sites.

TeraGrid's creators and collaborators are developing a "science gateways" initiative to allow more researchers and educators access to TeraGrid capabilities, tailored to their own communities, through their own desktop computers. Science gateway projects are aimed at supporting access to TeraGrid via web portals, desktop applications or via other grids. An initial set of 10 gateways will address new scientific opportunities in fields from bioinformatics to nanotechnology as well as interoperation between TeraGrid and other grid infrastructures.

"In the past several years, the community has learned that reliable, sustainable cyberinfrastructure requires both close collaboration among organizations making their resources available to scientists and engineers through grid technologies, and a critical mass of people responsible for the overall enterprise," said Catlett. "A focused coordination team ensures that users experience a coherent system and provides a way to organize a large number of resource providers."

Such access will enable researchers to analyze terabytes--trillions of bytes--of data collected by scientific instruments, telescopes, satellites and remote sensors. TeraGrid will allow researchers to manipulate enormous data sets in novel ways to gain new insights into research questions and societal problems.

George Karniadakis, a professor of Applied Mathematics at Brown University, has long been a leader in applying NSF computing resources to a variety of fluid dynamics problems. Karniadakis now uses computational resources at four different TeraGrid sites simultaneously. "The TeraGrid is a distributed supercomputer, a system with potentially unlimited capability for us. For the first time, we can simulate cardiovascular processes in the entire arterial tree," he said.

Thomas Jordan, director of the Southern California Earthquake Center at the University of Southern California, leads an effort to combine computational models from several disciplines to shed new light on the consequences of earthquakes. "TeraGrid is providing us with the computational resources to deploy an entirely new technology for seismic hazard analysis," Jordan said.

"We fully expect TeraGrid to catalyze the next generation of scientific discoveries," said Deborah Crawford, acting director of NSF's Office of Cyberinfrastructure. "Simply put, breakthrough science and engineering depends on a first-class cyberinfrastructure."

"TeraGrid is helping build a national infrastructure for computational research," according to Guy Almes, NSF program manager who oversees the project. "TeraGrid enables scientists and engineers to both be more productive in their research and education as well as enjoy doing this work with cutting-edge tools while working closely with peers around the world."

For more information about TeraGrid see: www.teragrid.org

-NSF-

Media Contacts
Richard (Randy) Vines, NSF, (703) 292-7963, rvines@nsf.gov
Faith Singer-Villalobos, Texas Advanced Computing Center, (512) 232-5771, faith@tacc.utexas.edu

Program Contacts
Deborah L. Crawford, NSF, (703) 292-8900, dcrawfor@nsf.gov

Principal Investigators
Charlie Catlett, University of Chicago / Argonne National Laboratory, (630) 252-7867, catlett@mcs.anl.gov

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

How big is a byte
How much information is a "byte?"
Credit and Larger Version



Email this pagePrint this page
Back to Top of page