text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation Home National Science Foundation - Engineering (ENG)
Civil, Mechanical and Manufacturing Innovation (CMMI)
design element
CMMI Home
About CMMI
Funding Opportunities
Awards
News
Events
Discoveries
Publications
Career Opportunities
View CMMI Staff
ENG Organizations
Chemical, Bioengineering, Environmental, and Transport Systems (CBET)
Civil, Mechanical and Manufacturing Innovation (CMMI)
Electrical, Communications and Cyber Systems (ECCS)
Engineering Education and Centers (EEC)
Emerging Frontiers in Research and Innovation (EFRI)
Industrial Innovation and Partnerships (IIP)
Proposals and Awards
Proposal and Award Policies and Procedures Guide
  Introduction
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Other Types of Proposals
Merit Review
NSF Outreach
Policy Office
Other Site Features
Special Reports
Research Overviews
Multimedia Gallery
Classroom Resources
NSF-Wide Investments

Email this pagePrint this page


Press Release 11-133
When Viruses Infect Bacteria

Looking in vivo at virus-bacterium associations sets stage for better understanding of such interactions in human health

Illustration of viruses infecting bacteria in a termite's hindgut.

Virus-bacterium associations were examined in the natural environment of a termite's hindgut.
Credit and Larger Version

June 30, 2011

Viruses are the most abundant parasites on Earth. Well known viruses, such as the flu virus, attack human hosts, while viruses such as the tobacco mosaic virus infect plant hosts.

More common, but less understood, are cases of viruses infecting bacteria known as bacteriophages, or phages. In part, this is due to the difficulty of culturing bacteria and viruses that have been cut off from their usual biological surroundings in a process called in vitro.

Researchers from the California Institute of Technology, funded in part by the National Science Foundation, were the first to use a clever technique to look at virus-bacterium interactions in vivo, that is, within an organism's normal state. The researchers report their results in the July 1st issue of the journal, Science.

As a test case, Rob Phillips and his team considered the interaction between viruses and bacteria in the hindgut, or posterior part, of a termite. Using new microfluidic technology, they were able to isolate single bacterial cells from the termite hindgut in six-nanoliter chambers on an array containing 765 such chambers.

They were then able to determine whether the chambers contained bacterial DNA, viral DNA or both. In the latter case, the researchers were able to statistically deduce whether the virus was specifically associated with the host--for example, by attaching to the host, shooting its DNA into the host, being incorporated into the host as a prophage (a viral genome inserted and integrated into the bacterial DNA), riding on a plasmid or by assembling new viruses within the host. And through this snapshot, the group recorded virus-bacterium associations.

Frequently there was a one-to-one virus-bacterium correspondence. However in some cases, the host was associated with a viral gene exhibiting marked diversity, suggesting possibly a more ancient infection, a more susceptible host or a phage replicating at a lower fidelity. By analyzing the bacteria and viruses based on their evolutionary development they were able to deduce that horizontal gene transfer, while it may be occurring, is not occurring at a rate high enough to randomize host-virus associations.

This study was by no means exhaustive. Many similar associations may still be found in the termite hindgut. And further inquiry may lead to a better understanding of the coevolution of a virus and its host. However, this was the first in vivo exercise, and it opens the doors of the field much wider than previously possible through in vitro culture alone.

-NSF-

Media Contacts
Maria C. Zacharias, NSF, (703) 292-8454, mzachari@nsf.gov
Lori Oliwenstein, California Institute of Technology, (626) 395 3631, lorio@caltech.edu

Principal Investigators
Rob Phillips, California Institute of Technology, (626) 395 3374, Phillips@pboc.caltech.edu

The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2014, its budget is $7.2 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives about 50,000 competitive requests for funding, and makes about 11,500 new funding awards. NSF also awards about $593 million in professional and service contracts yearly.

 Get News Updates by Email 

Useful NSF Web Sites:
NSF Home Page: http://www.nsf.gov
NSF News: http://www.nsf.gov/news/
For the News Media: http://www.nsf.gov/news/newsroom.jsp
Science and Engineering Statistics: http://www.nsf.gov/statistics/
Awards Searches: http://www.nsf.gov/awardsearch/

 

Cover of the July 1, 2011 issue of the journal Science.
The researchers' work is described in the July 1, 2011 issue of the journal Science.
Credit and Larger Version



Email this pagePrint this page
Back to Top of page