Email Print Share

News Release 10-111

A Star Is Born ... But How?

Columbia researchers reveal the simple, key chemical formula enabling the formation of early stars

Photo of the apparatus used in the lab to simulate the chemistry of the early universe.

This is the apparatus used in the lab to simulate the chemistry of the early universe.

July 1, 2010

View a webcast with Daniel Wolf Savin of Columbia University.

This material is available primarily for archival purposes. Telephone numbers or other contact information may be out of date; please see current contact information at media contacts.

Created in the first three minutes after the Big Bang, hydrogen and helium gave rise to all other elements in the universe.  Stars made this possible. Through nuclear fusion, stars generated elements such as carbon, oxygen, magnesium and all the other raw materials necessary for making planets and ultimately life. But how did the first stars come to be? It all hinges on hydrogen atoms coming together to form hydrogen molecules. New research from Columbia University sheds light on this process.

"In order for us to follow the chain of events responsible for how we got here, we need to understand the beginning," says Daniel Wolf Savin, a senior research scientist in Columbia University's Astrophysics Laboratory. The work of Savin and his collaborators is published in, "Experimental Results for H2 Formation from H- and H and Implications for First Star Formation" in the July 2nd edition of the journal Science. The research is fully described in the attached June 30, 2010 webcast briefing Savin did for journalists on an embargoed basis.

"I'm excited to have worked on such a challenging inter-disciplinary problem with an international cast of stars," said Savin. "To discern the importance of the reaction at the very beginning required a cosmologist who understood the physics of first star formation and a physicist who understood the underlying chemical reactions. Together, Cosmologist Simon Glover of the University of Heidleberg and I were able to identify the key chemical reactions that needed to be better understood so that we could more reliably model the formation of the first stars.

"Once we determined what needed to be studied, then the question became one of how. We assembled the necessary expertise and experimentalists to build a novel apparatus to measure the reaction. I did this work with colleagues Holger Kreckel Hjalmar Bruhns and Ken Miller from Columbia, and Xavier Urbain from the Université Catholique de Louvain in Belgium. But measuring the reaction was not enough. We also needed to calculate it. Theoretical Physicist Martin Cizek from Charles University in Prague did just that."

Financial support for this work comes in part from the National Science Foundation Division of Chemistry and Division of Astronomical Sciences.


Media Contacts
Lisa-Joy Zgorski, NSF, (703) 292-8311, email:

Principal Investigators
Daniel Wolf Savin, Columbia Astrophysics Laboratory, 212-854-4124, email:

The U.S. National Science Foundation propels the nation forward by advancing fundamental research in all fields of science and engineering. NSF supports research and people by providing facilities, instruments and funding to support their ingenuity and sustain the U.S. as a global leader in research and innovation. With a fiscal year 2023 budget of $9.5 billion, NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and institutions. Each year, NSF receives more than 40,000 competitive proposals and makes about 11,000 new awards. Those awards include support for cooperative research with industry, Arctic and Antarctic research and operations, and U.S. participation in international scientific efforts.

mail icon Get News Updates by Email 

Connect with us online
NSF website:
NSF News:
For News Media:
Awards database:

Follow us on social