text-only page produced automatically by LIFT Text Transcoder Skip all navigation and go to page contentSkip top navigation and go to directorate navigationSkip top navigation and go to page navigation
National Science Foundation
design element
Find Funding
A-Z Index of Funding Opportunities
Recent Funding Opportunities
Upcoming Due Dates
Advanced Funding Search
Interdisciplinary Research
How to Prepare Your Proposal
About Funding
Proposals and Awards
Proposal and Award Policies and Procedures Guide
Proposal Preparation and Submission
bullet Grant Proposal Guide
  bullet Grants.gov Application Guide
Award and Administration
bullet Award and Administration Guide
Award Conditions
Merit Review
NSF Outreach
Policy Office
Grants.gov logo

Email this pagePrint this page
Directorate for Social, Behavioral & Economic Sciences

Cognitive Neuroscience  (CogNeuro)


Name Email Phone Room
Alumit  Ishai-Program Director aishai@nsf.gov (703) 292-5145  907.03  
Tanika  M. White-Program Assistant twhite@nsf.gov (703) 292-8962   


Apply to PD 15-1699 as follows:

For full proposals submitted via FastLane: standard Grant Proposal Guide proposal preparation guidelines apply.
For full proposals submitted via Grants.gov: the NSF Grants.gov Application Guide; A Guide for the Preparation and Submission of NSF Applications via Grants.gov Guidelines applies. (Note: The NSF Grants.gov Application Guide is available on the Grants.gov website and on the NSF website at: http://www.nsf.gov/publications/pub_summ.jsp?ods_key=grantsgovguide)

Important Information for Proposers

A revised version of the NSF Proposal & Award Policies & Procedures Guide (PAPPG) (NSF 16-1), is effective for proposals submitted, or due, on or after January 25, 2016. Please be advised that, depending on the specified due date, the guidelines contained in NSF 16-1 may apply to proposals submitted in response to this funding opportunity.


Full Proposal Deadline Date:  August 15, 2016

August 13, Annually Thereafter



The National Science Foundation announces the area of Cognitive Neuroscience within the Division of Behavioral and Cognitive Sciences in the Directorate for Social, Behavioral, and Economic Sciences.

Cognitive neuroscience is an interdisciplinary field of research dedicated to the understanding of the neural mechanisms underlying human cognition. As this field continues to grow, the National Science Foundation intends for cognitive neuroscience emphases to spur the development of highly novel theories, techniques and models directed toward enabling basic scientific understanding of a broad range of issues involving brain, cognition, and behavior. The emphasis at NSF is on the integration of cognitive, social and economic science in service of insights into healthy functions of brain, cognition, and behavior.  Additionally, NSF highly values the exploration of new methodologies, utilization of the latest analytic approaches, and the convergence of cutting edge techniques for addressing basic questions about human cognition.  

Research topics in Cognitive Neuroscience have included sensory processes (including olfaction, touch, multi-sensory integration), higher perceptual processes (for faces, music, rhythm etc.), higher cognitive functions (e.g., consciousness, decision-making, mathematics, mental imagery, navigation, reasoning), language (e.g., discourse, multi-lingualism, syntax), affect, attention, executive functions, learning, memory, motor control, prediction, sleep, social processes, timing, and uncertainty. Cognitive neuroscientists further clarify their findings by examining developmental and transformational aspects of such phenomena across the span of life, in healthy young and aging populations, as well as in neurological and psychiatric disorders (Autism, Schizophrenia, Parkinson’s Disease) that provide models for understanding healthy brain function. 

New frontiers in cognitive neuroscience research have emerged from investigations that integrate data at different spatial and temporal scales from a variety of techniques.  The scientific study of cognitive neuroscience includes neuroimaging techniques for measuring or inferring neural activity, such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI); optical imaging techniques for measuring vascular changes, such as near infrared spectroscopy (NIRS); techniques for sampling large population-level activity with superb temporal resolution, such as electroencephalography (EEG) and magnetoencephalography (MEG), and electrocorticography (ECoG); and techniques for determining structure-function relationships, such as diffusion imaging techniques (tensor, weighted, spectral).  Additional techniques include non-invasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and electrical stimulation (tES) techniques that may use direct current (tDCS), alternating current (tACS) or random noise (tRNS) modes of stimulation.  Other techniques include brain lesion-symptom mapping, neurogenetic approaches and computational modeling.  The data from such varied sources can be further clarified by comparison with invasive neurophysiological recordings in non-human primates and other mammals.  Additional recent advances include machine-learning and multivariate analysis methods, resting-state and task-based connectomics and large-scale data analysis. Combinatorial techniques now allow for the simultaneous application of research methodologies, such as TMS, EEG and fMRI; other advances have led to model-based approaches, wherein computational cognitive models may directly inform neuroimaging results.  With the advent of new techniques and combinations, current progress in the field of cognitive neuroscience has moved from a modular, region-of-interest (ROI), correlative approach, to a network-based description of neural states, with a focus on causal mechanisms and connectivity.  The cognitive neuroscience program seeks to emphasize that although ROI approaches may still be necessary, such approaches will only be considered competitive if they provide an advance in understanding causal mechanisms. 

Findings from cognitive neuroscience can elucidate functional brain organization, such as the operations performed by a particular brain area within a network of distributed, discrete neural areas supporting specific cognitive, perceptual, motor, or affective operations or representations. Moreover, these findings can reveal the effect on brain organization of individual differences (including genetic variation), plasticity, and recovery of function following damage to the nervous system. Cognitive neuroscience can also elucidate the duration and sequencing of sub-processes, for example, by integrating high temporal resolution MEG data with high spatial resolution fMRI within subject and task. Such finely calibrated data can then inform cognitive and behavioral process models. Finally, subsequent comparisons of brain organization across species may allow the neural basis of such processes to be understood in a biological context.


The Cognitive Neuroscience program seeks highly innovative proposals aimed at advancing a rigorous understanding of human cognition, including how the human brain mediates action, affect, creativity, decision making, intentionality, perception, social processes, and thought.  Topics may bear on core functions such as attention, emotion, empathy, executive processes, language, learning, memory, music, sensory processing, sleep, representation of self and other, reasoning and rhythm. Topics may also include how human cognition develops and changes in the brain across the lifespan.

The program is particularly interested in supporting the development of new techniques and technologies for recording, analyzing, and modeling complex brain activity and human brain mapping. Such projects should include a plan for sharing new software and other technologies with the research community at large.  Additionally, the program is interested in supporting projects addressing the growing amount of data collected across disparate lab environments, which may require new standardization, curation, and sharing solutions. 

Studies of disease states (e.g., Alzheimer’s disease, Autism, brain damaged patients, Parkinson’s disease and Schizophrenia) may be components of projects supported by this program. However, the emphasis in such projects must be to advance basic scientific understanding of healthy neural mechanisms, and not on disease etiology, diagnosis, or treatment.

The program also intends to foster projects that integrate perspectives across disciplines, e.g., from the cognitive sciences, psychology, developmental sciences, biology, computer science, engineering, education, anthropology, physics, mathematics and statistics. For example, projects that involve collaborations among individuals with expertise in one of the cognitive sciences, neuroimaging, neural microcircuitry, and modeling complex systems are strongly encouraged.

Examples of appropriate grant proposals include, but are not be limited to, the following. It is to be expected that scientific advances will overtake many of the following issues, and that other research and development matters will emerge as key enablers to progress in basic cognitive neuroscience.

  • Proposals related to the development of new, or integration of, existing methodologies to address cognitive questions involving human or non-human primates.
  • Application of computational techniques or models for addressing cognitive questions or issues of data analysis.
  • Connectivity and network-based examinations to characterize distinct or overlapping cognitive processes.
  • Proposals examining non-stationary effects across different time windows spanning several orders of magnitude, such as learning and developmental paradigms in young, aging, healthy or impaired groups.
  • Development and utilization of brain stimulation or symptom-mapping methods in conjunction with advanced behavioral analysis for determining causal linkages between neural networks and cognitive functions.
  • Comparative gene expression studies in humans or non-human primates of neural regions governing higher cognitive functions within a biological framework.


The final report of a workshop held at NSF in July 2006, on the Grand Challenges of Mind and Brain

The final report of a second workshop held at NSF in August, 2006, on Brain Science as a Mutual Opportunity for the Physical and Mathematical Sciences, Computer Science, and Engineering


What Has Been Funded (Recent Awards Made Through This Program, with Abstracts)

Map of Recent Awards Made Through This Program



Email this pagePrint this page
Back to Top of page