GEORGIA

FY 2022 Fast Facts

- **$188,664,000**
 - Total NSF Awards to Georgia

- **$138,233,000**
 - Invested in Fundamental Research in Georgia

- **$50,431,000**
 - Invested in STEM Education in Georgia

- **$9,820,000**
 - Invested in Georgia Businesses

Top NSF-funded Academic Institutions for FY 2022

- Georgia Institute of Technology
 - $79,427,141

- University of Georgia
 - $30,928,483

- Georgia State University
 - $15,616,663

NSF By The Numbers

The National Science Foundation (NSF) is a $9.5 billion independent federal agency created by Congress in 1950 to promote the progress of science; to advance the national health, prosperity, and welfare; to secure the national defense. NSF’s vital role is to support basic research and researchers who create knowledge that transforms the future.

- **11,000**
 - Number of awards NSF funds each year

- **$9.9 billion**
 - FY 2022 Enacted

- **39,000**
 - Proposals evaluated

- **$1.6 billion**
 - Stem education

- **1,800**
 - NSF-funded institutions

- **93%**
 - Funds research, education and related activities

- **352,000**
 - People NSF supported

- **258**
 - NSF-funded Nobel Prize winners

Data represents FY 2022 Actuals unless otherwise indicated.
Expanding the Frontiers of Science

Led by Kennesaw State University, this award supports theoretical research with a general aim to understand, predict and control novel regimes of matter in light-driven quantum materials. Our understanding of light-matter interactions has been instrumental in technological applications such as solar cells, phototransistors and light-emitting diodes. However, recent advances in probes accessing and manipulating quantum states in time and length scales that were unattainable just a decade ago have now enabled the exploration of new quantum phases of matter, leading to many questions and challenges. This project aims to establish the theoretical foundations of physical phenomena in periodically driven systems where light irradiation offers precise control of material properties and can induce novel non-equilibrium states of technological relevance. This award also supports the training of undergraduate students through direct involvement in the principal investigator’s research, aids the creation of educational materials and resources to train high school teachers, and exposes high school students to the concepts of materials physics and light-matter interactions. In addition, this project helps in establishing collaborations with national and international researchers and increases the retention and enrollment of students from historically underserved communities in physics.

STEM Education and Broadening Participation

Broadening Participation Research Centers provide support to historically Black colleges and universities to conduct broadening participation research and serve as national hubs for the rigorous study and broad dissemination of the critical theories, structures and pedagogies, as well as culturally sensitive interventions that contribute to the success of HBCUs in educating African American STEM undergraduates. The project at Morehouse College, in partnership with Spelman College and Virginia State University, seeks to formally establish the HBCU STEM Undergraduate Success Research Center – STEM-US. The mission of the center is to understand and tell the stories of HBCUs through convergence research for us and the nation; thereby documenting the legacy of excellence in STEM education at HBCUs and contributing to future educational innovation. Among higher education institutions, HBCUs have a sustained record of consistently producing a diverse group of graduates in the STEM fields who are prepared for further education and the STEM workforce. Through research, education, knowledge building and outreach, this center will have an impact on STEM education reform and broadening participation at all HBCUs, and will allow all of higher education, and thus society, to benefit from the experience and lessons of HBCUs in broadening participation.

Regional Innovation Engines

The NSF Engines program envisions fostering flourishing regional innovation ecosystems across the country, providing a unique opportunity to spur economic growth in regions that have not fully participated in the technology boom of the past few decades. The NSF Engines program uniquely harnesses the nation’s science and technology research and development enterprise and regional-level resources. NSF Engines can catalyze robust partnerships rooted in scientific and technological innovation to positively impact the economy within a geographic region, address societal challenges, and advance national competitiveness. Find potential NSF engines in your state.

Infrastructure

The NSF Engineering Research Center for Cell Manufacturing Technologies, led by Georgia Tech, enables scalable manufacturing of therapeutic cells as an effective, safe, reproducible and affordable product with standardized characterization and quality control.

NCSES

According to the National Center for Science and Engineering Statistics (NCSES), which is housed in NSF, Georgia ranks 5th in the nation for academic research space. Visit Georgia's science and engineering state profile to learn more!

- 35.48% of Georgia's higher education degrees are concentrated in S&E fields.
- 5.11% of Georgia's workforce are employed in S&E occupations.
- 6.85% of Georgia's total employment is attributable to knowledge- and technology-intensive industries.

Learn More

CHIPS & SCIENCE – The CHIPS and Science Act's investments in the U.S. National Science Foundation will help the United States remain a global leader in innovation. Implementation of this legislation will be key to ensuring that ideas, talent and prosperity are unleashed across all corners of the nation. For more information, please visit NSF's CHIPS and Science website.

RESEARCH SECURITY – NSF is committed to safeguarding the integrity and security of science and engineering while also keeping fundamental research open and collaborative. NSF seeks to address an age of new threats and challenges through close work with our partners in academia, law enforcement, intelligence and other federal agencies. By fostering transparency, disclosure and other practices that reflect the values of research integrity, NSF is helping to lead the way in ensuring taxpayer-funded research remains secure. To learn more, please visit NSF's Research Security website.

CONNECT WITH NSF – For more information on NSF's impact in your state, please contact NSF's Office of Legislative and Public Affairs at congressionalteam@nsf.gov.

www.nsf.gov