Nationally, about 1 in 16 workers (6.2% or 9 million) have occupations as scientists or engineers (4.9%), or technical workers (1.3%). The STEM workforce is larger still when defined as either those who hold a bachelor’s degree or higher in S&E (24.5 million) or those who use S&E technical expertise in their jobs (23.8 million), regardless of level of degree.

A state’s S&E performance helps fuel its and the nation’s economy. Four benchmarks of Washington’s S&E performance are highlighted here: the cost of public higher education, the size of the STEM workforce, investment in research and development, and venture capital funding.

Rising Cost of a Bachelor’s Degree

A bachelor’s degree is one of several entry points to higher paying jobs associated with science, engineering, and many technical occupations.

Nationally, 34% of the total U.S. workforce has a bachelor’s degree or higher. In contrast, 76% of workers in S&E occupations have a bachelor’s degree or higher.

Average annual in-state cost of a public 4-year institution

(Adjusted for inflation to 2018 dollars)

- **2000**: $10,000
- **2005**: $15,000
- **2010**: $20,000
- **2015**: $25,000
- **2018**: $30,000

Washington

- 2000: $10,000
- 2005: $15,000
- 2010: $20,000
- 2015: $25,000
- 2018: $30,000

U.S.

- 2000: $10,000
- 2005: $15,000
- 2010: $20,000
- 2015: $25,000
- 2018: $30,000

Source: National Center for Education Statistics, *Digest of Education Statistics*

STEM Workforce: People Working in STEM Occupations

Nationally, about 1 in 16 workers (6.2% or 9 million) have occupations as scientists or engineers (4.9%), or technical workers (1.3%). The STEM workforce is larger still when defined as either those who hold a bachelor’s degree or higher in S&E (24.5 million) or those who use S&E technical expertise in their jobs (23.8 million), regardless of level of degree.

Jobs in S&E as a percent of all jobs in 2018

- **Scientists/Engineers**: Washington 7.4%, U.S. 4.9%
- **Workers in Technical Occupations**: Washington 1.7%, U.S. 1.3%

Source: U.S. Department of Labor, Bureau of Labor Statistics, Occupational Employment Statistics Survey
Research and development (R&D) spending is a driver of innovation. Investing in science and technology today has ripple-effect benefits throughout the economy over the long term.

Annual state performance in R&D varies considerably, from $289 million (SD) to $135.1 billion (CA). Washington is one of 9 states that performs between $15 to $30 billion per year in R&D. In this figure, Washington’s percent change in R&D spending is compared to the two highest and the two lowest states within this group.

Total 2016 Research and Development Performed

<table>
<thead>
<tr>
<th>State</th>
<th>Total 2016 R&D Spending</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>$22.9B</td>
</tr>
<tr>
<td>U.S.</td>
<td>$515.3B</td>
</tr>
</tbody>
</table>

Source: NSF, National Center for Science and Engineering Statistics, National Patterns of R&D Resources

Venture Capital Investment

Venture capital investment supports U.S. businesses that take on the risk of developing and commercializing cutting-edge, emerging technologies. States with high values are successful at attracting venture capital to fuel new kinds of business, and ultimately, expand economic growth.

Total 2017 Venture Capital Investment

<table>
<thead>
<tr>
<th>State</th>
<th>Total 2017 VC Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>WA</td>
<td>$1.7B</td>
</tr>
<tr>
<td>U.S.</td>
<td>$80.6B</td>
</tr>
</tbody>
</table>

Source: Pitchbook Venture Capital and Private Equity Database

Percent change in R&D spending: 2000 to 2016

(Adjusted for inflation to 2016 dollars)

Total annual venture capital investment: 2000 to 2017

(Adjusted for inflation to 2017 dollars)